15 KiB
Garmin Analyser
A comprehensive Python application for analyzing Garmin workout data from FIT, TCX, and GPX files, as well as direct integration with Garmin Connect. Provides detailed power, heart rate, and performance analysis with beautiful visualizations and comprehensive reports via a modular command-line interface.
Features
- Multi-format Support: Parse FIT files. TCX and GPX parsing is not yet implemented and is planned for a future enhancement.
- Garmin Connect Integration: Direct download from Garmin Connect
- Comprehensive Analysis: Power, heart rate, speed, elevation, and zone analysis
- Advanced Metrics: Normalized Power, Intensity Factor, Training Stress Score
- Interactive Charts: Power curves, heart rate zones, elevation profiles
- Detailed Reports: HTML, PDF, and Markdown reports with customizable templates
- Interval Detection: Automatic detection and analysis of workout intervals
- Performance Tracking: Long-term performance trends and summaries
Installation
Requirements
- Python 3.8 or higher
- pip package manager
Install Dependencies
pip install -r requirements.txt
Optional Dependencies
For PDF report generation:
pip install weasyprint
Quick Start
Basic Usage
Analyze a single workout file:
python main.py --file path/to/workout.fit --report --charts
Analyze all workouts in a directory:
python main.py --directory path/to/workouts --summary --format html
Download from Garmin Connect:
python main.py --garmin-connect --report --charts --summary
Command Line Options
usage: main.py [-h] [--config CONFIG] [--verbose]
(--file FILE | --directory DIRECTORY | --garmin-connect | --workout-id WORKOUT_ID | --download-all | --reanalyze-all)
[--ftp FTP] [--max-hr MAX_HR] [--zones ZONES] [--cog COG]
[--output-dir OUTPUT_DIR] [--format {html,pdf,markdown}]
[--charts] [--report] [--summary]
Analyze Garmin workout data from files or Garmin Connect
options:
-h, --help show this help message and exit
--config CONFIG, -c CONFIG
Configuration file path
--verbose, -v Enable verbose logging
Input options:
--file FILE, -f FILE Path to workout file (FIT, TCX, or GPX)
--directory DIRECTORY, -d DIRECTORY
Directory containing workout files
--garmin-connect Download from Garmin Connect
--workout-id WORKOUT_ID
Analyze specific workout by ID from Garmin Connect
--download-all Download all cycling activities from Garmin Connect (no analysis)
--reanalyze-all Re-analyze all downloaded activities and generate reports
Analysis options:
--ftp FTP Functional Threshold Power (W)
--max-hr MAX_HR Maximum heart rate (bpm)
--zones ZONES Path to zones configuration file
--cog COG Cog size (teeth) for power calculations. Auto-detected if not provided
Output options:
--output-dir OUTPUT_DIR
Output directory for reports and charts
--format {html,pdf,markdown}
Report format
--charts Generate charts
--report Generate comprehensive report
--summary Generate summary report for multiple workouts
Examples:
Analyze latest workout from Garmin Connect: python main.py --garmin-connect
Analyze specific workout by ID: python main.py --workout-id 123456789
Download all cycling workouts: python main.py --download-all
Re-analyze all downloaded workouts: python main.py --reanalyze-all
Analyze local FIT file: python main.py --file path/to/workout.fit
Analyze directory of workouts: python main.py --directory data/
Configuration:
Set Garmin credentials in .env file: GARMIN_EMAIL and GARMIN_PASSWORD
Configure zones in config/config.yaml or use --zones flag
Override FTP with --ftp flag, max HR with --max-hr flag
Output:
Reports saved to output/ directory by default
Charts saved to output/charts/ when --charts is used
Deprecation Notice
The Text User Interface (TUI) and legacy analyzer have been removed in favor of the more robust and maintainable modular command-line interface (CLI). The project now relies exclusively on the modular CLI (main.py and cli.py) for all operations. All functionality from the legacy components has been successfully migrated to the modular stack.
Setup credentials
Canonical environment variables:
- GARMIN_EMAIL
- GARMIN_PASSWORD
Single source of truth:
- Credentials are centrally accessed via get_garmin_credentials(). If GARMIN_EMAIL is not set but GARMIN_USERNAME is present, the username value is used as email and a one-time deprecation warning is logged. GARMIN_USERNAME is deprecated and will be removed in a future version.
Linux/macOS (bash/zsh):
export GARMIN_EMAIL="you@example.com"
export GARMIN_PASSWORD="your-app-password"
Windows PowerShell:
$env:GARMIN_EMAIL = "you@example.com"
$env:GARMIN_PASSWORD = "your-app-password"
.env sample:
GARMIN_EMAIL=you@example.com
GARMIN_PASSWORD=your-app-password
Note on app passwords:
- If your Garmin account uses two-factor authentication or app-specific passwords, create an app password in your Garmin account settings and use it for GARMIN_PASSWORD.
Parity and unaffected behavior:
- Authentication and download parity is maintained. Original ZIP downloads and FIT extraction workflows are unchanged in clients/garmin_client.py.
- Alternate format downloads (FIT, TCX, GPX) are unaffected by this credentials change.
Configuration
Basic Configuration
Create a config/config.yaml file:
# Garmin Connect credentials
# Credentials are provided via environment variables (GARMIN_EMAIL, GARMIN_PASSWORD).
# Do not store credentials in config.yaml. See "Setup credentials" in README.
# Output settings
output_dir: output
log_level: INFO
# Training zones
zones:
ftp: 250 # Functional Threshold Power (W)
max_heart_rate: 185 # Maximum heart rate (bpm)
power_zones:
- name: Active Recovery
min: 0
max: 55
percentage: true
- name: Endurance
min: 56
max: 75
percentage: true
- name: Tempo
min: 76
max: 90
percentage: true
- name: Threshold
min: 91
max: 105
percentage: true
- name: VO2 Max
min: 106
max: 120
percentage: true
- name: Anaerobic
min: 121
max: 150
percentage: true
heart_rate_zones:
- name: Zone 1
min: 0
max: 60
percentage: true
- name: Zone 2
min: 60
max: 70
percentage: true
- name: Zone 3
min: 70
max: 80
percentage: true
- name: Zone 4
min: 80
max: 90
percentage: true
- name: Zone 5
min: 90
max: 100
percentage: true
Advanced Configuration
You can also specify zones configuration in a separate file:
# zones.yaml
ftp: 275
max_heart_rate: 190
power_zones:
- name: Recovery
min: 0
max: 50
percentage: true
- name: Endurance
min: 51
max: 70
percentage: true
# ... additional zones
Usage Examples
Single Workout Analysis
# Analyze a single FIT file with custom FTP
python main.py --file workouts/2024-01-15-ride.fit --ftp 275 --report --charts
# Generate PDF report
python main.py --file workouts/workout.tcx --format pdf --report
# Quick analysis with verbose output
python main.py --file workout.gpx --verbose --report
Batch Analysis
# Analyze all files in a directory
python main.py --directory data/workouts/ --summary --charts --format html
# Analyze with custom zones
python main.py --directory data/workouts/ --zones config/zones.yaml --summary
Reports: normalized variables example
Reports consume normalized speed and heart rate keys in templates. Example (HTML template):
{# See workout_report.html #}
<p>Sport: {{ metadata.sport }} ({{ metadata.sub_sport }})</p>
<p>Speed: {{ summary.avg_speed_kmh|default(0) }} km/h; HR: {{ summary.avg_hr|default(0) }} bpm</p>
- Template references: workout_report.html, workout_report.md
Garmin Connect Integration
# Download and analyze last 30 days
python main.py --garmin-connect --report --charts --summary
# Download specific period
python main.py --garmin-connect --report --output-dir reports/january/
Output Structure
The application creates the following output structure:
output/
├── charts/
│ ├── workout_20240115_143022_power_curve.png
│ ├── workout_20240115_143022_heart_rate_zones.png
│ └── ...
├── reports/
│ ├── workout_report_20240115_143022.html
│ ├── workout_report_20240115_143022.pdf
│ └── summary_report_20240115_143022.html
└── logs/
└── garmin_analyser.log
Analysis Features
Power Analysis
- Average Power: Mean power output
- Normalized Power: Adjusted power accounting for variability
- Maximum Power: Peak power output
- Power Zones: Time spent in each power zone
- Power Curve: Maximum power for different durations
Heart Rate Analysis
- Average Heart Rate: Mean heart rate
- Maximum Heart Rate: Peak heart rate
- Heart Rate Zones: Time spent in each heart rate zone
- Heart Rate Variability: Analysis of heart rate patterns
Performance Metrics
- Intensity Factor (IF): Ratio of Normalized Power to FTP
- Training Stress Score (TSS): Overall training load
- Variability Index: Measure of power consistency
- Efficiency Factor: Ratio of Normalized Power to Average Heart Rate
Interval Detection
- Automatic detection of high-intensity intervals
- Analysis of interval duration, power, and recovery
- Summary of interval performance
Analysis outputs and normalized naming
The analyzer and report pipeline now provide normalized keys for speed and heart rate to ensure consistent units and naming across code and templates. See WorkoutAnalyzer.analyze_workout() and ReportGenerator._prepare_report_data() for implementation details.
- Summary keys:
- summary.avg_speed_kmh — Average speed in km/h (derived from speed_mps)
- summary.avg_hr — Average heart rate in beats per minute (bpm)
- Speed analysis keys:
- speed_analysis.avg_speed_kmh — Average speed in km/h
- speed_analysis.max_speed_kmh — Maximum speed in km/h
- Heart rate analysis keys:
- heart_rate_analysis.avg_hr — Average heart rate (bpm)
- heart_rate_analysis.max_hr — Maximum heart rate (bpm)
- Backward-compatibility aliases maintained in code:
- summary.avg_speed — Alias of avg_speed_kmh
- summary.avg_heart_rate — Alias of avg_hr
Guidance: templates should use the normalized names going forward.
Templates: variables and metadata
Templates should reference normalized variables and the workout metadata fields:
- Use metadata.sport and metadata.sub_sport instead of activity_type.
- Example snippet referencing normalized keys:
- speed: {{ summary.avg_speed_kmh }} km/h; HR: {{ summary.avg_hr }} bpm
- For defensive rendering, Jinja defaults may be used (e.g., {{ summary.avg_speed_kmh|default(0) }}), though normalized keys are expected to be present.
Reference templates:
Migration note
- Legacy template fields avg_speed and avg_heart_rate are deprecated; the code provides aliases (summary.avg_speed → avg_speed_kmh, summary.avg_heart_rate → avg_hr) to prevent breakage temporarily.
- Users should update custom templates to use avg_speed_kmh and avg_hr.
- metadata.activity_type is replaced by metadata.sport and metadata.sub_sport.
Customization
Custom Report Templates
You can customize report templates by modifying the files in visualizers/templates/:
workout_report.html: HTML report templateworkout_report.md: Markdown report templatesummary_report.html: Summary report template
Adding New Analysis Metrics
Extend the WorkoutAnalyzer class in analyzers/workout_analyzer.py:
def analyze_custom_metric(self, workout: WorkoutData) -> dict:
"""Analyze custom metric."""
# Your custom analysis logic here
return {'custom_metric': value}
Custom Chart Types
Add new chart types in visualizers/chart_generator.py:
def generate_custom_chart(self, workout: WorkoutData, analysis: dict) -> str:
"""Generate custom chart."""
# Your custom chart logic here
return chart_path
Troubleshooting
Common Issues
File Not Found Errors
- Ensure file paths are correct and files exist
- Check file permissions
Garmin Connect Authentication
- Verify GARMIN_EMAIL and GARMIN_PASSWORD environment variables (or entries in your .env) are set; fallback from GARMIN_USERNAME logs a one-time deprecation warning via get_garmin_credentials()
- Check internet connection
- Ensure Garmin Connect account is active
Missing Dependencies
- Run
pip install -r requirements.txt - For PDF support:
pip install weasyprint
Performance Issues
- For large datasets, use batch processing
- Consider using
--summaryflag for multiple files
Debug Mode
Enable verbose logging for troubleshooting:
python main.py --verbose --file workout.fit --report
API Reference
Core Classes
WorkoutData: Main workout data structureWorkoutAnalyzer: Performs workout analysisChartGenerator: Creates visualizationsReportGenerator: Generates reportsGarminClient: Handles Garmin Connect integration
Example API Usage
from pathlib import Path
from config.settings import Settings
from parsers.file_parser import FileParser
from analyzers.workout_analyzer import WorkoutAnalyzer
# Initialize components
settings = Settings('config/config.yaml')
parser = FileParser()
analyzer = WorkoutAnalyzer(settings.zones)
# Parse and analyze workout
workout = parser.parse_file(Path('workout.fit'))
analysis = analyzer.analyze_workout(workout)
# Access results
print(f"Average Power: {analysis['summary']['avg_power']} W")
print(f"Training Stress Score: {analysis['summary']['training_stress_score']}")
Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests for new functionality
- Submit a pull request
License
MIT License - see LICENSE file for details.
Support
For issues and questions:
- Check the troubleshooting section
- Review log files in
output/logs/ - Open an issue on GitHub