Files
GarminSync/cycling.md
2025-08-22 05:41:12 -07:00

221 lines
8.3 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
# Cycling FIT Analysis Implementation Plan
## Overview
Extend the existing GarminSync FIT parser to calculate cycling-specific metrics including power estimation and singlespeed gear ratio analysis for activities without native power data.
## Phase 1: Core Infrastructure Setup
### 1.1 Database Schema Extensions
**File: `garminsync/database.py`**
- Extend existing `PowerAnalysis` table with cycling-specific fields:
```python
# Add to PowerAnalysis class:
peak_power_1s = Column(Float, nullable=True)
peak_power_5s = Column(Float, nullable=True)
peak_power_20s = Column(Float, nullable=True)
peak_power_300s = Column(Float, nullable=True)
normalized_power = Column(Float, nullable=True)
intensity_factor = Column(Float, nullable=True)
training_stress_score = Column(Float, nullable=True)
```
- Extend existing `GearingAnalysis` table:
```python
# Add to GearingAnalysis class:
estimated_chainring_teeth = Column(Integer, nullable=True)
estimated_cassette_teeth = Column(Integer, nullable=True)
gear_ratio = Column(Float, nullable=True)
gear_inches = Column(Float, nullable=True)
development_meters = Column(Float, nullable=True)
confidence_score = Column(Float, nullable=True)
analysis_method = Column(String, default="singlespeed_estimation")
```
### 1.2 Enhanced FIT Parser
**File: `garminsync/fit_processor/parser.py`**
- Extend `FITParser` to extract cycling-specific data points:
```python
def _extract_cycling_data(self, message):
"""Extract cycling-specific metrics from FIT records"""
# GPS coordinates for elevation/gradient
# Speed and cadence for gear analysis
# Power data (if available) for validation
# Temperature for air density calculations
```
## Phase 2: Power Estimation Engine
### 2.1 Physics-Based Power Calculator
**New file: `garminsync/fit_processor/power_estimator.py`**
**Key Components:**
- **Environmental factors**: Air density, wind resistance, temperature
- **Bike specifications**: Weight (22 lbs = 10 kg), aerodynamic drag coefficient
- **Rider assumptions**: Weight (75 kg default), position (road bike)
- **Terrain analysis**: Gradient calculation from GPS elevation data
**Core Algorithm:**
```python
class PowerEstimator:
def __init__(self):
self.bike_weight_kg = 10.0 # 22 lbs
self.rider_weight_kg = 75.0 # Default assumption
self.drag_coefficient = 0.88 # Road bike
self.frontal_area_m2 = 0.4 # Typical road cycling position
self.rolling_resistance = 0.004 # Road tires
self.drivetrain_efficiency = 0.97
self.air_density = 1.225 # kg/m³ at sea level, 20°C
def calculate_power(self, speed_ms, gradient_percent,
air_temp_c=20, altitude_m=0):
"""Calculate estimated power using physics model"""
# Power = (Rolling + Gravity + Aerodynamic + Kinetic) / Efficiency
```
**Power Components:**
1. **Rolling resistance**: `P_roll = Crr × (m_bike + m_rider) × g × cos(θ) × v`
2. **Gravitational**: `P_grav = (m_bike + m_rider) × g × sin(θ) × v`
3. **Aerodynamic**: `P_aero = 0.5 × ρ × Cd × A ×`
4. **Acceleration**: `P_accel = (m_bike + m_rider) × a × v`
### 2.2 Peak Power Analysis
**Methods:**
- 1-second, 5-second, 20-second, 5-minute peak power windows
- Normalized Power (NP) calculation using 30-second rolling average
- Training Stress Score (TSS) estimation based on NP and ride duration
## Phase 3: Singlespeed Gear Ratio Analysis
### 3.1 Gear Ratio Calculator
**New file: `garminsync/fit_processor/gear_analyzer.py`**
**Strategy:**
- Analyze flat terrain segments (gradient < 3%)
- Use speed/cadence relationship to determine gear ratio
- Test against common singlespeed ratios for 38t and 46t chainrings
- Calculate confidence scores based on data consistency
**Core Algorithm:**
```python
class SinglespeedAnalyzer:
def __init__(self):
self.chainring_options = [38, 46] # teeth
self.common_cogs = list(range(11, 28)) # 11t to 27t rear cogs
self.wheel_circumference_m = 2.096 # 700x25c tire
def analyze_gear_ratio(self, speed_data, cadence_data, gradient_data):
"""Determine most likely singlespeed gear ratio"""
# Filter for flat terrain segments
# Calculate gear ratio from speed/cadence
# Match against common ratios
# Return best fit with confidence score
```
**Gear Metrics:**
- **Gear ratio**: Chainring teeth ÷ Cog teeth
- **Gear inches**: Gear ratio × wheel diameter (inches)
- **Development**: Distance traveled per pedal revolution (meters)
### 3.2 Analysis Methodology
1. **Segment filtering**: Identify flat terrain (gradient < 3%, speed > 15 km/h)
2. **Ratio calculation**: `gear_ratio = (speed_ms × 60) ÷ (cadence_rpm × wheel_circumference_m)`
3. **Ratio matching**: Compare calculated ratios against theoretical singlespeed options
4. **Confidence scoring**: Based on data consistency and segment duration
## Phase 4: Integration with Existing System
### 4.1 FIT Processing Workflow Enhancement
**File: `garminsync/fit_processor/analyzer.py`**
- Integrate power estimation and gear analysis into existing analysis workflow
- Add cycling-specific analysis triggers (detect cycling activities)
- Store results in database using existing schema
### 4.2 Database Population
**Migration strategy:**
- Extend existing migration system to handle new fields
- Process existing FIT files retroactively
- Add processing status tracking for cycling analysis
### 4.3 CLI Integration
**File: `garminsync/cli.py`**
- Add new command: `garminsync analyze --cycling --activity-id <id>`
- Add batch processing: `garminsync analyze --cycling --missing`
- Add reporting: `garminsync report --power-analysis --gear-analysis`
## Phase 5: Validation and Testing
### 5.1 Test Data Requirements
- FIT files with known power data for validation
- Various singlespeed configurations for gear ratio testing
- Different terrain types (flat, climbing, mixed)
### 5.2 Validation Methodology
- Compare estimated vs. actual power (where available)
- Validate gear ratio estimates against known bike configurations
- Test edge cases (very low/high cadence, extreme gradients)
### 5.3 Performance Optimization
- Efficient gradient calculation from GPS data
- Optimize power calculation loops for large datasets
- Cache intermediate calculations
## Phase 6: Advanced Features (Future)
### 6.1 Environmental Corrections
- Wind speed/direction integration
- Barometric pressure for accurate altitude
- Temperature-based air density adjustments
### 6.2 Machine Learning Enhancement
- Train models on validated power data
- Improve gear ratio detection accuracy
- Personalized power estimation based on rider history
### 6.3 Comparative Analysis
- Compare estimated metrics across rides
- Trend analysis for fitness progression
- Gear ratio optimization recommendations
## Implementation Priority
**High Priority:**
1. Database schema extensions
2. Basic power estimation using physics model
3. Singlespeed gear ratio analysis for flat terrain
4. Integration with existing FIT processing pipeline
**Medium Priority:**
1. Peak power analysis (1s, 5s, 20s, 5min)
2. Normalized Power and TSS calculations
3. Advanced gear analysis with confidence scoring
4. CLI commands for analysis and reporting
**Low Priority:**
1. Environmental corrections (wind, pressure)
2. Machine learning enhancements
3. Advanced comparative analysis features
4. Web UI integration for visualizing results
## Success Criteria
1. **Power Estimation**: Within ±10% of actual power data (where available for validation)
2. **Gear Ratio Detection**: Correctly identify gear ratios within ±1 tooth accuracy
3. **Processing Speed**: Analyze typical FIT file (1-hour ride) in <5 seconds
4. **Data Coverage**: Successfully analyze 90%+ of cycling FIT files
5. **Integration**: Seamlessly integrate with existing GarminSync workflow
## File Structure Summary
```
garminsync/
├── fit_processor/
│ ├── parser.py (enhanced)
│ ├── analyzer.py (enhanced)
│ ├── power_estimator.py (new)
│ └── gear_analyzer.py (new)
├── database.py (enhanced)
├── cli.py (enhanced)
└── migrate_cycling_analysis.py (new)
```
This plan provides a comprehensive roadmap for implementing cycling-specific FIT analysis while building on the existing GarminSync infrastructure and maintaining compatibility with current functionality.