mirror of
https://github.com/sstent/GarminSync.git
synced 2026-01-25 08:35:02 +00:00
221 lines
8.3 KiB
Markdown
221 lines
8.3 KiB
Markdown
# Cycling FIT Analysis Implementation Plan
|
||
|
||
## Overview
|
||
Extend the existing GarminSync FIT parser to calculate cycling-specific metrics including power estimation and singlespeed gear ratio analysis for activities without native power data.
|
||
|
||
## Phase 1: Core Infrastructure Setup
|
||
|
||
### 1.1 Database Schema Extensions
|
||
**File: `garminsync/database.py`**
|
||
- Extend existing `PowerAnalysis` table with cycling-specific fields:
|
||
```python
|
||
# Add to PowerAnalysis class:
|
||
peak_power_1s = Column(Float, nullable=True)
|
||
peak_power_5s = Column(Float, nullable=True)
|
||
peak_power_20s = Column(Float, nullable=True)
|
||
peak_power_300s = Column(Float, nullable=True)
|
||
normalized_power = Column(Float, nullable=True)
|
||
intensity_factor = Column(Float, nullable=True)
|
||
training_stress_score = Column(Float, nullable=True)
|
||
```
|
||
|
||
- Extend existing `GearingAnalysis` table:
|
||
```python
|
||
# Add to GearingAnalysis class:
|
||
estimated_chainring_teeth = Column(Integer, nullable=True)
|
||
estimated_cassette_teeth = Column(Integer, nullable=True)
|
||
gear_ratio = Column(Float, nullable=True)
|
||
gear_inches = Column(Float, nullable=True)
|
||
development_meters = Column(Float, nullable=True)
|
||
confidence_score = Column(Float, nullable=True)
|
||
analysis_method = Column(String, default="singlespeed_estimation")
|
||
```
|
||
|
||
### 1.2 Enhanced FIT Parser
|
||
**File: `garminsync/fit_processor/parser.py`**
|
||
- Extend `FITParser` to extract cycling-specific data points:
|
||
```python
|
||
def _extract_cycling_data(self, message):
|
||
"""Extract cycling-specific metrics from FIT records"""
|
||
# GPS coordinates for elevation/gradient
|
||
# Speed and cadence for gear analysis
|
||
# Power data (if available) for validation
|
||
# Temperature for air density calculations
|
||
```
|
||
|
||
## Phase 2: Power Estimation Engine
|
||
|
||
### 2.1 Physics-Based Power Calculator
|
||
**New file: `garminsync/fit_processor/power_estimator.py`**
|
||
|
||
**Key Components:**
|
||
- **Environmental factors**: Air density, wind resistance, temperature
|
||
- **Bike specifications**: Weight (22 lbs = 10 kg), aerodynamic drag coefficient
|
||
- **Rider assumptions**: Weight (75 kg default), position (road bike)
|
||
- **Terrain analysis**: Gradient calculation from GPS elevation data
|
||
|
||
**Core Algorithm:**
|
||
```python
|
||
class PowerEstimator:
|
||
def __init__(self):
|
||
self.bike_weight_kg = 10.0 # 22 lbs
|
||
self.rider_weight_kg = 75.0 # Default assumption
|
||
self.drag_coefficient = 0.88 # Road bike
|
||
self.frontal_area_m2 = 0.4 # Typical road cycling position
|
||
self.rolling_resistance = 0.004 # Road tires
|
||
self.drivetrain_efficiency = 0.97
|
||
self.air_density = 1.225 # kg/m³ at sea level, 20°C
|
||
|
||
def calculate_power(self, speed_ms, gradient_percent,
|
||
air_temp_c=20, altitude_m=0):
|
||
"""Calculate estimated power using physics model"""
|
||
# Power = (Rolling + Gravity + Aerodynamic + Kinetic) / Efficiency
|
||
```
|
||
|
||
**Power Components:**
|
||
1. **Rolling resistance**: `P_roll = Crr × (m_bike + m_rider) × g × cos(θ) × v`
|
||
2. **Gravitational**: `P_grav = (m_bike + m_rider) × g × sin(θ) × v`
|
||
3. **Aerodynamic**: `P_aero = 0.5 × ρ × Cd × A × v³`
|
||
4. **Acceleration**: `P_accel = (m_bike + m_rider) × a × v`
|
||
|
||
### 2.2 Peak Power Analysis
|
||
**Methods:**
|
||
- 1-second, 5-second, 20-second, 5-minute peak power windows
|
||
- Normalized Power (NP) calculation using 30-second rolling average
|
||
- Training Stress Score (TSS) estimation based on NP and ride duration
|
||
|
||
## Phase 3: Singlespeed Gear Ratio Analysis
|
||
|
||
### 3.1 Gear Ratio Calculator
|
||
**New file: `garminsync/fit_processor/gear_analyzer.py`**
|
||
|
||
**Strategy:**
|
||
- Analyze flat terrain segments (gradient < 3%)
|
||
- Use speed/cadence relationship to determine gear ratio
|
||
- Test against common singlespeed ratios for 38t and 46t chainrings
|
||
- Calculate confidence scores based on data consistency
|
||
|
||
**Core Algorithm:**
|
||
```python
|
||
class SinglespeedAnalyzer:
|
||
def __init__(self):
|
||
self.chainring_options = [38, 46] # teeth
|
||
self.common_cogs = list(range(11, 28)) # 11t to 27t rear cogs
|
||
self.wheel_circumference_m = 2.096 # 700x25c tire
|
||
|
||
def analyze_gear_ratio(self, speed_data, cadence_data, gradient_data):
|
||
"""Determine most likely singlespeed gear ratio"""
|
||
# Filter for flat terrain segments
|
||
# Calculate gear ratio from speed/cadence
|
||
# Match against common ratios
|
||
# Return best fit with confidence score
|
||
```
|
||
|
||
**Gear Metrics:**
|
||
- **Gear ratio**: Chainring teeth ÷ Cog teeth
|
||
- **Gear inches**: Gear ratio × wheel diameter (inches)
|
||
- **Development**: Distance traveled per pedal revolution (meters)
|
||
|
||
### 3.2 Analysis Methodology
|
||
1. **Segment filtering**: Identify flat terrain (gradient < 3%, speed > 15 km/h)
|
||
2. **Ratio calculation**: `gear_ratio = (speed_ms × 60) ÷ (cadence_rpm × wheel_circumference_m)`
|
||
3. **Ratio matching**: Compare calculated ratios against theoretical singlespeed options
|
||
4. **Confidence scoring**: Based on data consistency and segment duration
|
||
|
||
## Phase 4: Integration with Existing System
|
||
|
||
### 4.1 FIT Processing Workflow Enhancement
|
||
**File: `garminsync/fit_processor/analyzer.py`**
|
||
- Integrate power estimation and gear analysis into existing analysis workflow
|
||
- Add cycling-specific analysis triggers (detect cycling activities)
|
||
- Store results in database using existing schema
|
||
|
||
### 4.2 Database Population
|
||
**Migration strategy:**
|
||
- Extend existing migration system to handle new fields
|
||
- Process existing FIT files retroactively
|
||
- Add processing status tracking for cycling analysis
|
||
|
||
### 4.3 CLI Integration
|
||
**File: `garminsync/cli.py`**
|
||
- Add new command: `garminsync analyze --cycling --activity-id <id>`
|
||
- Add batch processing: `garminsync analyze --cycling --missing`
|
||
- Add reporting: `garminsync report --power-analysis --gear-analysis`
|
||
|
||
## Phase 5: Validation and Testing
|
||
|
||
### 5.1 Test Data Requirements
|
||
- FIT files with known power data for validation
|
||
- Various singlespeed configurations for gear ratio testing
|
||
- Different terrain types (flat, climbing, mixed)
|
||
|
||
### 5.2 Validation Methodology
|
||
- Compare estimated vs. actual power (where available)
|
||
- Validate gear ratio estimates against known bike configurations
|
||
- Test edge cases (very low/high cadence, extreme gradients)
|
||
|
||
### 5.3 Performance Optimization
|
||
- Efficient gradient calculation from GPS data
|
||
- Optimize power calculation loops for large datasets
|
||
- Cache intermediate calculations
|
||
|
||
## Phase 6: Advanced Features (Future)
|
||
|
||
### 6.1 Environmental Corrections
|
||
- Wind speed/direction integration
|
||
- Barometric pressure for accurate altitude
|
||
- Temperature-based air density adjustments
|
||
|
||
### 6.2 Machine Learning Enhancement
|
||
- Train models on validated power data
|
||
- Improve gear ratio detection accuracy
|
||
- Personalized power estimation based on rider history
|
||
|
||
### 6.3 Comparative Analysis
|
||
- Compare estimated metrics across rides
|
||
- Trend analysis for fitness progression
|
||
- Gear ratio optimization recommendations
|
||
|
||
## Implementation Priority
|
||
|
||
**High Priority:**
|
||
1. Database schema extensions
|
||
2. Basic power estimation using physics model
|
||
3. Singlespeed gear ratio analysis for flat terrain
|
||
4. Integration with existing FIT processing pipeline
|
||
|
||
**Medium Priority:**
|
||
1. Peak power analysis (1s, 5s, 20s, 5min)
|
||
2. Normalized Power and TSS calculations
|
||
3. Advanced gear analysis with confidence scoring
|
||
4. CLI commands for analysis and reporting
|
||
|
||
**Low Priority:**
|
||
1. Environmental corrections (wind, pressure)
|
||
2. Machine learning enhancements
|
||
3. Advanced comparative analysis features
|
||
4. Web UI integration for visualizing results
|
||
|
||
## Success Criteria
|
||
|
||
1. **Power Estimation**: Within ±10% of actual power data (where available for validation)
|
||
2. **Gear Ratio Detection**: Correctly identify gear ratios within ±1 tooth accuracy
|
||
3. **Processing Speed**: Analyze typical FIT file (1-hour ride) in <5 seconds
|
||
4. **Data Coverage**: Successfully analyze 90%+ of cycling FIT files
|
||
5. **Integration**: Seamlessly integrate with existing GarminSync workflow
|
||
|
||
## File Structure Summary
|
||
|
||
```
|
||
garminsync/
|
||
├── fit_processor/
|
||
│ ├── parser.py (enhanced)
|
||
│ ├── analyzer.py (enhanced)
|
||
│ ├── power_estimator.py (new)
|
||
│ └── gear_analyzer.py (new)
|
||
├── database.py (enhanced)
|
||
├── cli.py (enhanced)
|
||
└── migrate_cycling_analysis.py (new)
|
||
```
|
||
|
||
This plan provides a comprehensive roadmap for implementing cycling-specific FIT analysis while building on the existing GarminSync infrastructure and maintaining compatibility with current functionality. |