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Leveraging Edge Compute for Cloud Application Scalability 
Abstract 
Data sent inefficiently to cloud applications can negatively impact HPE’s profitability by driving up cloud costs and 
shrinking margins. To address this, we propose a cloud-based data optimization service that partitions wireless access points 
sending data to cloud application based on data correlations, allowing APs in the same group to share common data with a 
designated leader, who consolidates it before sending it to the cloud. This reduces the number of messages sent to the cloud, 
lowering costs. Using simulations, we demonstrate that our approach can reduce the number of messages by 50%, enabling 
better scaling of cloud applications. 

Problem statement 
The IoT Operations (IoTOps) solution within Aruba Central is used for the 
deployment and management of Internet of Things (IoT) applications. IoT 
applications utilize technologies such as BLE, Zigbee, Wi-Fi RTLS, and other IoT 
proprietary standards with the goal of addressing customer use cases such as 
indoor localization, smart door locks, sensor and habitat monitoring, electronic 
shelf labels, etc. IoT applications can either be deployed on a dedicated virtual 
machine appliance per site or on individual Aruba wireless access points (APs) 
(see Figure 1). Due to cost concerns, the AP-based deployment mode (AP 
connector) is preferred by most Aruba Central WLAN customers. In a typical 
deployment, each Aruba Access Point (AP) is configured as an “AP connector” 
reporting IoT device data, IoT application-level metrics and logs to IoTOps 
periodically. Each AP connector can process data from around 500 BLE devices, 
32 Zigbee devices and a few proprietary USB gateways. IoTOps displays time-series data for each IoT device such 
as signal strength, transmit/receive messages, etc. Additionally, IoTOps pre-processes the (RSSI/signal strength) 
data generated by the IoT devices before handing it over to other Central applications such as Asset Tracking, 

which are responsible for computing IoT device location.   

In customer deployments where we have thousands of APs sending data to 
IoTOps, we will start to see issues crop up with all APs sending their periodic 
and constantly changing status messages, and IoT data reports to Aruba 
Central. Figure 2 shows the Kafka data processing lag for the “ii-ae-devices” 
IoTOps service before and after a simulation of 10K APs sending device reports 
every 60s for 10minutes. Note that it takes significant time (nearly two hours) 
after a 10 minute run to clear the lag. This clearly indicates that the current 
deployment cannot scale to 10K APs with the existing resources. Furthermore, 
these numbers fall well short of the expected 20K scale number for AP 
connectors. The current IoTOps microservices configuration deploys 5 replicas 
to handle device report messages from AP connectors (2 CPUs and 2GB RAM 
per replica plus 1 CPU and 8GB RAM for 1 KairosDB instance), and 2 replicas 
to handle RSSI messages (0.75CPU and 2GB RAM per replica). For reference, 
a “m6g.2xlarge” AWS EC2 instance with 8vCPUs and 32GB memory costs 
USD240 per month for an On-Demand instance (~USD120 for standard 
reserved instances). Doubling or quadrupling the scale of these microservices 
will incur higher cloud costs as each instance of the microservice necessitates  
additional infrastructure instances of Kafka, PostGres SQL, Redis, etc.  

While some data, such as application metrics and connector information, is unique to each AP, device reports are 
particularly problematic because much of the information they contain is duplicated by neighboring, overlapping 
APs that report the same device to IoTOps. Processing this redundant data places unnecessary strain on cloud 
resources and individual microservices. Reducing this duplication would enhance microservice performance, 

Figure 1:  Overview of AP connector-
based  IoTOps Deployment. 

Figure 2: Kafka lags observed when 
10K APs send device reports to 
IoTOps. (X axis shows time and Y-
axis shows the number of 
lagging/unprocessed messages. 
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enabling the system to scale to a greater number of APs using the same resources. Furthermore, since cloud 
infrastructure costs are borne by HPE, reducing these costs would directly benefit the company’s bottom line.    

Our solution 

 
Figure 3: Illustration shows the formation of multiple sets of groups with different member APs for optimizing data being 
transported to each cloud microservice. 

At a high-level, all the AP connectors in the network will be partitioned into groups based on the locality of 
information. Group members will exchange common data with a designated group member which is responsible for 
coalescing the data into fewer messages before forwarding to the cloud. Every AP connector is still responsible for 
forwarding the data that is unique to it to the cloud. While aggregating data on edge compute devices before 
forwarding to cloud is not a new concept, our solution expands this concept by taking into account the needs of 
multiple cloud applications simultaneously by forming overlapping functional groups based on the end consumer 
cloud applications. The details of our approach are as follows:   

1. Each cloud application will begin by receiving data from individual AP. Each application will create a dataset 
of all the IoT devices (or sensor value attributes) categorized by AP. This dataset will be provided as input 
to our data optimization cloud service which will compute the data correlations between different APs. The 
resulting correlation matrix will be re-arranged into a number of groups such that within each group there is 
high degree of similarity between the members of that group. The data optimization service will return the 
groups with a designated group leader (AP with which other group members have highest degree of data 
similarity) and mark the common data attributes between leader and member APs.  

2. Each cloud application will propagate the group information to the APs. For grouped APs, the “group 
leader” will operate an MQTT server service. Member APs will send common data to it over an MQTT 
connection. The “leader” will coalesce the data from group members with its own data reports and 
forward to the cloud application. Other group members will send their “unique” data separately to the 
cloud. Overall, we will reduce the number of data messages needed to be processed by the cloud since 
there is only one copy of the common/duplicate data being sent to the cloud. 

Figure 3 shows an illustration of our approach highlighting the creation of multiple sets of groups specific to various 
cloud applications based on the similarity characteristics of data consumed by them. By having multiple applications 
taking advantage of our data optimization service, we can have multiple groups per application each minimizing 
data to their respective cloud application. The more applications that adopt our service, higher are the cost savings, 
as the same cloud infrastructure can scale to a bigger number of APs. 
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Evidence the solution works 
To show the effectiveness of our approach, we gathered BLE device data from multiple live QA testbeds in San 
Jose and Beijing. We simulated the behavior of our data optimizer service using scripts to process the BLE data 
and to create a similarity matrix from the data. Our service uses the similarity matrix to compute correlations between 
pairs of APs, and returns groups of APs with high degree of data similarity.  

 
Figure 4: The correlation matrix shows the similarity between BLE device data observed by the APs, and on the right we show the 
groups computed by our program. 

Figure 4 shows one example of the group 
creation using BLE device data as input by our 
approach on a 9 AP testbed. Table 1 
summarizes the reduction in number of 
messages sent to the cloud for BLE device data. 
With ~50% drop in the total messages sent to 
the cloud application, our approach 
demonstrates that it can significantly reduce the 
message processing lag encountered by 
services such as “ii-ae-devices”. The reduced 
lag will easily translate to savings in cloud 
infrastructure costs by enabling microservices 
to better scale to higher number of APs, with 
fewer EC2 instances. 

Competitive approaches 
As mentioned in the “Problem Statement” section, customers can deploy a dedicated IoTOps virtual appliance per 
site which would aggregate the data from all APs at that site before forwarding to the cloud. However, this approach 
is a non-starter for many small and medium business customers that have simple IoT application requirements, or 
for large customers that have a small number of APs distributed across multiple sites. Managing an extra network 
appliance translates into more work for the customer. The AP Connector is quite appealing for IoT customers that 
have less compute intensive and distributed IoT applications, which is the case for most IoT applications. 

Current status 
We will present our simulation results to our PLM and leadership team, with the goal of having the proposed 
changes adopted for implementation in upcoming Central/CNX sprints. 

Next steps 
In addition to minimizing BLE device data reports and BLE device RSSI messages, our approach can be utilized to 
compute the Zigbee coordinator neighborhood information. Solving this problem will improve the usability of the 
IoTOps Zigbee doorlock integrations with Assa Abloy and Dormakaba. The AirRange CNX application, which uses 
AP barometer sensor data to to determine whether APs are co-located on the same floor, can benefit by consuming 
data aggregated using our approach. We will continue to identify cloud applications that can integrate with our 
approach to optimize cloud costs.  

Total APs Number of 
Groups 

Total Messages Potential 

Savings Before 
Grouping 

After 
Grouping 

9 2 2655 1110 41% 

13 4 6308 3398 53% 

19 3 391 210 54% 

30 5 15015 8117 54% 

Table 1: For each testbeds, the table shows the number of similarity 
groups computed using our approach, the number of device update 

messages sent to cloud before and after the grouping takes effect and the 
ensuing savings in terms of number of messages. 
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