”Energy-Aware Server Consolidation for Serverless
Computing”
Tech Con 2025 Abstract 616
HPE Go to Market; Hybrid Cloud;

Hewlett Packard Enterprise Confidential



Energy-Aware Server Consolidation for Serverless
Computing

Abstract

Serverless Computing (SC) has increasingly been adopted by offering autonomous and flexible scaling of fine-
grained functions that alleviate customers from manually managing resources. lIts ability to scale according to in-
coming workload makes it suitable for a wide range of applications, especially for functions that benefit from highly
parallel executions. While current SC platforms already offer autoscaling components, we identify an issue preva-
lent across the cloud computing domain that leads to increased energy consumption and reduced performance.
The issue arises from underutilized servers and misconfigured function resource requirements. Approaches are
needed to solve these inefficiencies as companies and customers try to minimize energy consumption and carbon
emissions. Therefore, we present a proactive server consolidation approach and dynamic function configuration
module that works in tandem with existing SC platforms. While server consolidation reduces the number of active
physical machines, function configuration tuning helps users find the optimal resource configuration. The server
consolidation approach uses request forecasts to proactively turn on or shutdown servers. Preliminary results show
that it can lower energy consumption by up to 38% without reducing throughput.

Problem statement

Customers adopt Serverless Computing (SC) for flexible execution of fine-grained functions. However, two caveats
arise in SC and other cloud paradigms that negatively impact energy consumption and performance. First, SC
promises scalability when customers need massive parallel function execution and a scale-to-zero approach when
no functions are required. This presents a waste of idle resources and frequently happens as workload patterns
often follow a diurnal pattern [1], which makes times of low workload an ideal candidate to save energy by shutting
down servers through server consolidation. The second caveat occurs when customers deploy their functions
because they must specify how many resources (e.g., CPU cores) are allocated for each instance. This is not an
easy task, and developers tend to overprovision them, thus resulting in low resource efficiency, which can reduce
overall throughput because fewer instances can be started. The trend of overprovisioning can be seen in the SC
trace dataset from Huawei [1], which contains information about request patterns and resource usage. It shows
that the CPU usage’s 95th percentile, of 80% of deployed functions, is at 20%, which presents an opportunity to
increase efficiency by lowering the allocated resources. Delimitrou et al. [2] have conducted a similar analysis
based on Virtual Machines, showing that the aggregate CPU utilization is below 20% while up to 80% of resources
are reserved. Both conclusions indicate that resources are wasted due to misconfigured applications, thus, wasting
space for other applications and increasing energy consumption. Therefore, we identify the problem of resource
underutilization in Serverless Computing platforms and introduce the following contributions:

» We propose a proactive server consolidation approach that dynamically minimzes the number of active
servers, reducing energy cost by up to 38% compared to the default platform.

» We also include a module that attempts to find the optimal function configuration, increasing resource effi-
ciency. Preliminary results show that optimized configurations can lead to higher resource usage.

Our solution aims to work in tandem with existing customer SC deployments, such as KNative and offers improved
energy consumption and resource efficiency, which does not affect overall throughput.

or

[on}

Our solution
Our solution combines a proactive ap- é’/\

calculates
PM Plan

Instances

proach for server consolidation and function
configuration optimization, to determine a

suitable function configuration that requires Request
fewer resources. Which aids us in con- provisions
solidating more servers and frees up re- I "oncfons | Datacenter

sources. In the following, we focus on the Flatform “ mm

consolidation approach and only outline the

function configuration and function migra- Figure 1: Proactive Server Consolidation System
tion component that moves running func-

tions from a host to be shutdown to an active one.

Time

Function
Request
Forecast

Analytical
Autoscaling
Model

PM
Planner

PM
Manager

receives
Function Scaling Plan

provides

executes
PM Plan

Hewlett Packard Enterprise Confidential 2



Proactive Server Consolidation The goal of proactive server consolidation is to manage the life cycle of physical
machines (PMs) by shutting them down when not needed and turning them back on in time to serve function re-
quests. However, these actions incur overhead that can take multiple minutes, which means that the consolidation
approach must act ahead of time to avoid any performance degradation. In addition, when shutting servers down,
currently running functions must be gracefully migrated. Migration entails careful selection of servers as perfor-
mance degradation can happen due to resource congestion (e.g., overloading a PM with CPU-bound functions).
Our consolidation approach is based on historical monitoring data of deployed functions (e.g., throughput), the
function requirements (e.g., CPU cores), and a forecast that estimates the number of incoming requests (RPS) for
the next hour in 10-minute intervals. This allows us to estimate the required number of function instances. This
builds the core idea of our consolidation strategy, and we now explain the components of the current system, which
is depicted in Figure 1.

Current System The Function Request Forecast module estimates the RPS in time windows, which the Analytical
Autoscaling Model module uses to estimate the number of required function instances. The PM Planner component
takes the Function Scaling Plan as input and produces a PM Plan that tells the PM Manager which servers to turn
on or shut down. The PM Planner implements the consolidation algorithm, which currently finds the maximum
value in the forecast and estimates the servers needed for that. The algorithm is simple and determines by looking
ahead whether we require more or less PMs in the near future and only assumes 75% cores of the server to be
available. The reason for that is that the servers use hyperthreading, which can introduce performance degradation
as soon as all physical cores are allocated to CPU-bound applications. The system integrates into the existing
Serverless Computing platform, based on Kubernetes, and builds on common and available monitoring data, such
as CPU usage, throughput, etc.

Function Request Forecast This module is implemented using Holt’s Exponential Smoothing method [3]. This
method uses past observations and forecasts by calculating an exponentially weighted sum over previous obser-
vations. We chose this method as an initial solution based on our data analysis of the Huawei dataset [1]. Our
analysis concluded that many functions have a weekly and daily reoccurring pattern, which simplifies the forecast
process and led us to choose Holt's Exponential Smoothing model and the past week of request observations as
input. The model’'s simplicity stems from its approach of fitting data for each request, which causes minimal infer-
ence overhead and, more importantly, does not require us to train models for each function. This makes it scalable
and very easy to use for new functions.

Function Migration & Configuration Tuning The Function Migration and Function Configuration Tuning are not
yet ready and therefore not included in Figure 1, but are important for a complete solution. While Kubernetes and
KNative already support function migration on their own, it can lead to performance degradation due to resource-
unaware function re-scheduling. We want to aid this process by giving hints about which nodes it should prefer
when re-scheduling function instances. The Function Configuration Tuning module is planned to be based on an
analytical model that uses resource usage to estimate the throughput of new function configurations. This module
will work together with the consolidation approach to find the optimal plan and function resource configuration.

Evidence the solution works

In the following, we first present the accuracy of our Function Request 30
Forecast module and then results from our end-to-end consolidation ex-
periments.

Median RMSPE
S

=
o

Function Request Forecast Figure 2 shows the median Root Mean
Squared Percentage Error (RMSPE) for three forecast windows of 10,
30 and 60 minutes from a test dataset that we created from the Huawei
dataset [1], which contains 20% of all functions that had a weekly pattern. 0
Results indicate that the median error is at or below 10%, but outliers

can go beyond 30%. The mean RMSPE has been heavily skewed for

some functions and tends to be higher than the median. We think these Figure 2: Median Root Mean Squared
errors come from the fluctuating request patterns. These fluctuations Percentage Error

often occur in two forms: abrupt increase in requests or changing average requests per week. Due to the fact that
we only have data of within one year, it's not possible to tell whether these fluctuations are common or outliers.

10 Min. 30 Min. 60 Min.
Forecast Window

End-to-End Consolidation These experiments focus on the ability of our current solution to manage servers and
decrease energy consumption while guaranteeing throughput. A limitation of the current evaluation is that we
do not shutdown servers and only ex- and include them from the Kubernetes cluster. In addition, our current
implementation uses data from the original trace to create the input for the forecast. However, to mimic real-world

Hewlett Packard Enterprise Confidential 3



behavior, we add a 20-second delay when servers start (in real life, we measured a startup time of around 5
minutes). We compare our proactive approach to the default Knative setup by using an 8-hour long trace from the
Huawei dataset [1] to reproduce a real-world setting, but shorten it to 8 minutes. An image inference function is
used as an evaluation application and configured with 24 cores (wasteful) and 18 cores (optimal). We estimate
both to process 20 requests per second, based on previous profiling experiments. However, we had to lower the
throughput for the optimal one during the experiments to 15. We realized in the end-to-end experiments that we
overestimated its throughput. and the consolidation failed to spin up a new server, while leading to lower energy
consumption, could cause reduced overall throughput.

Throughput The wasteful function was in both approaches, proactive and default, able to process on average 117
requests per second. The optimal configuration achieved in the default experiment an average throughput of 115
RPS, while the proactive one was able to process 113 RPS. In all cases, the proactive consolidation approach did
not negatively impact the throughput.

CPU Usage The proactive approach leads to a higher average function instance CPU usage in both cases. Specif-
ically, the wasteful configuration in the default approach achieved an average of 15% and a max value of 41%.
While the proactive approach achieved an average of 28% and a maximum value of 53%. In the optimal function
instance case, the default approach achieved 17% average and 91% maximum CPU usage, and the proactive one
achieved on average 29% usage and 100% max CPU usage. Thus, the optimal configuration was able to use up
all its allocated CPU cores, and the proactive approach can increase average and maximum CPU usage.

N
Nooa g
o o a
o & o

~
a
o

Request count per 10 seconds
o
(=3
S

N
o
o

Energy Consumption The last part summarizes the energy con- N EE™ oo sy
sumption results, which were calculated by excluding power values 18 b
when servers were excluded from the cluster by our consolidation

system. Results show an overall reduction in energy consumption.

The proactive approach used in the wasteful experiment a an av- JJJ

erage of 0.133 kWh, while the default approach consumed 0.217 1000

kWh. In the optimal configuration, the default approach used 0.223

kWh, while the proactive one used 0.18 kWh. Figure 3 shows one

experiment that visualizes our consolidation decisions with respect

to the incoming workload, where 77 D means server 17 has been 0

switched off and 77 U means it has been turned on. We see that O O OB O e () o2 92

the proactive approach immediately shuts down servers 17 and 18, Figure 3: Proactive server consolidation
and turns them back on when workload is rising. When keeping in

mind that the throughput over all cases is the same, we see a clear benefit of using our approach over the default.
Competitive approaches

While Server Consolidation has been investigated in research [4, 5, 6, 7, 8], public offerings are more commonly
referred to as Cluster Autoscaling (CA). There are several CA offerings available from public cloud vendors, such
as Amazon [9, 10], Google Cloud [11], Alibaba [12], and also the built-in CA from Kubernetes [13]. However,
these are tied to Big Data platforms [10, 11, 12], such as Hadoop, and focus on dynamically adding and removing
Virtual Machines, or use a reactive approach and work with Kubernets [13, 9]. In contrast, our approach builds
on a proactive approach with a focus on physical machines to save energy consumption and is applicable to any
Serverless Computing platform that runs on Kubernetes.

Current status

The current prototype already works end-to-end with a real-world setup. However, the Function Configuration
Module, to dynamically determine optimal Function Configurations, and the Function Migration Module to support
the scheduler, have yet to be integrated in the prototype.

Next steps

Our solution offers a novel approach to allowing customers to build serverless clusters to handle peak workloads. It
relieves them from unnecessary energy costs during downtime without compromising on performance. Noticeable
improvements must be made towards the consolidation algorithm and the request forecast module. The former to
include a reactive fail-safe mechanism in case the forecast does not accurately estimate workload, and the latter
one to improve the accuracy. In addition, turning machines on is costly and should be carefully done.

Hewlett Packard Enterprise Confidential 4



References

[1] A. Joosen, A. Hassan, M. Asenov, R. Singh, L. Darlow, J. Wang, and A. Barker, “How does it function?
characterizing long-term trends in production serverless workloads,” in Proceedings of the 2023 ACM
Symposium on Cloud Computing, SoCC '23, (New York, NY, USA), p. 443-458, Association for Comput-
ing Machinery, 2023.

[2] C. Delimitrou and C. Kozyrakis, “Quasar: resource-efficient and qos-aware cluster management,” in Pro-
ceedings of the 19th International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’14, (New York, NY, USA), p. 127—-144, Association for Computing Machin-
ery, 2014.

[3] E. S. Gardner Jr., “Exponential smoothing: The state of the art,” Journal of Forecasting, vol. 4, no. 1,
pp. 128, 1985.

[4] M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “Energy-efficient resource allocation and provision-
ing framework for cloud data centers,” IEEE Transactions on Network and Service Management, vol. 12,
no. 3, pp. 377-391, 2015.

[5] C. Gu, Z. Li, H. Huang, and X. Jia, “Energy efficient scheduling of servers with multi-sleep modes for
cloud data center,” IEEE Transactions on Cloud Computing, vol. 8, no. 3, pp. 833-846, 2020.

[6] Z. Xiong, M. Zhao, Z. Yuan, J. Xu, and L. Cai, “Energy-saving optimization of application server clusters
based on mixed integer linear programming,” Journal of Parallel and Distributed Computing, vol. 171,
pp. 111-129, 2023.

[7] L. Fan, C. Gu, L. Qiao, W. Wu, and H. Huang, “Greensleep: A multi-sleep modes based scheduling of
servers for cloud data center,” in 2017 3rd International Conference on Big Data Computing and Commu-
nications (BIGCOM), pp. 368-375, 2017.

[8] A. Varasteh and M. Goudarzi, “Server consolidation techniques in virtualized data centers: A survey,’
IEEE Systems Journal, vol. 11, no. 2, pp. 772-783, 2017.

[9] Amazon, “Karpenter” https://github.com/aws/karpenter-provider-aws, 2024.

[10] Amazon, “Aws glue auto scaling.” https://docs.aws.amazon.com/glue/latest/dg/auto-scaling.
html, 2024.

[11] Google, “Dataproc.” https://cloud.google.com/dataproc?hl=en, 2024.

[12] Alibaba, “Hadoop autoscaler.” https://www.alibabacloud.com/help/en/emr/emr-on-ecs/
user-guide/enable-or-disable-auto-scaling-for-hadoop-clusters, 2024.

[13] Kubernetes, “Kubernetes cluster autoscaler.” https://github.com/kubernetes/autoscaler/tree/
master/cluster-autoscaler, 2024.

Hewlett Packard Enterprise Confidential 5



