
”ZeroCopy-DSMS: A Zero-copy, CPU-efficient Serverless
Architecture using Distributed Shared Memory and

SmartNICs”
Tech Con 2025 Abstract 729

Hybrid Cloud;

Hewlett Packard Enterprise Confidential 1



ZeroCopy-DSMS: A Zero-copy, CPU-efficient Serverless
Architecture using Distributed Shared Memory and

SmartNICs

Abstract
Cloud-native applications extensively depend on the loosely coupled microservice paradigm to take

advantage of the elasticity and fine-grained resource management provided by the serverless cloud ar-
chitecture. Application functions use the infrastructure layer of the serverless architecture for common
functionalities like traffic management, observability, telemetry, auto-scaling, and authentication. The in-
frastructure layer is implemented as a service mesh that connects functions and microservices of the
applications using sidecars for service mesh functionality. Therefore, the performance of the applications
significantly depends on the cloud’s sidecar-based infrastructure. Container-based sidecars typically rely
on heavyweight kernel networking to provide layer-7 connectivity and RPC support for communication.
This reliance introduces significant processing overheads and higher hardware resource consumption. In
this paper, we propose ZEROCOPY-DSMS, a novel design for the infrastructure layer of the serverless
architecture. ZEROCOPY-DSMS enables the efficient use of SmartNICs with novel hardware accelerators
and low-latency Remote Direct Memory Access (RDMA) networks for a serverless architecture based on
distributed shared memory. ZEROCOPY-DSMS frees up CPU from heavyweight TCP/IP protocol pro-
cessing and unnecessary data serialization/de-serialization tasks.

Problem statement
Serverless computing, often referred to as Function-as-a-Service (FaaS [5]), has become a popular
cloud computing service as it eases the burden on application developers to provision and manage cloud
resources [12]. The “pay-as-you-go” billing and fine-grained resource elasticity of serverless computing
can dramatically reduce user costs [12, 19]. By taking advantage of the microservice-based deployment
paradigm, serverless computing encourages the user to convert applications into disaggregated server-
less functions that are loosely coupled. This makes serverlerss computing an attractive choice for a
variety of applications, e.g., online web service [17], data analytics [11], etc.

Worker
node

Worker
node

Control Plane Autoscaler Placement engine

Function Runtime
user function 

container
sidecar

container

node agent
Function Runtime

user function 
container

sidecar
container

Function Runtime
user function 

container
sidecar

container

Function Runtime
user function 

container
sidecar

container

node agent

Function Runtime
user function 

container
sidecar

container

Function Runtime
user function 

container
sidecar

container

autoscaling 
decision

metrics

create/kill 
functions

Message BrokerIngress Gateway
inter-function networking

clients

cluster 
edge

Figure 1: The architecture of serverless: data plane and control
plane.

Figure 1 shows the key components of the server-
less data plane (we use the open-source Knative
platform as a representative example, where the
processing pipeline of Knative’s queue proxy side-
car is shown in Figure 2). Each serverless func-
tion comprises two containers: a user container
responsible for executing application logic and a
separate sidecar container. All the sidecars within
the cluster together form an infrastructure layer,
known as a service mesh, that helps to orches-
trate the loosely coupled serverless functions, integrating them into a cohesive cloud service. At the edge
of this infrastructure is an ingress gateway, a cluster-wide data plane component. The ingress gateway
serves as the entry point to the serverless cluster, facilitating tasks such as authentication. Additionally,
a message broker, which is a “stateful” persistent component, facilitates networking between serverless
functions. The broker enables users to leverage the microservices paradigm, allowing them to build
complex applications by composing individual serverless functions.

Hewlett Packard Enterprise Confidential 2



Buffer pool (queue)

User Function

Request Log 
Handler

Request Metrics 
Handler

HTTP Span 
Middleware

New Timeout 
Handler

Forwarded 
Shim HandlerProxy HandlerRequest App 

Metrics Handler
Concurrency 
State Handler

Knative’s Sidecar 

Incoming traffic

Figure 2: Processing pipeline in Knative’s queue proxy sidecar. Note
that we only show the ingress pipeline here.

Challenges. Despite the many advantages
of serverless computing, current platforms
suffer from high data plane overheads [18,
10, 6, 15], potentially contributing multiple
milliseconds of delay which makes it difficult
to meet the strict latency requirements of ap-
plications. This is especially true when the cloud service provider seeks to achieve the cost savings that
serverless computing promises. Therefore, several key challenges need to be addressed:

• Slow Kernel-Based Inter-Function Networking: Kernel-based networking introduces significant perfor-
mance penalties [18]. Overheads such as data copies, context switches, interrupts, protocol processing
(e.g., TCP/IP) and serialization/deserialization, occur frequently when messages are moved between
functions [18], resulting in milliseconds (or more) of latency.

• Redundant Protocol Processing Within the Cluster: Even with hardware accelerators (e.g., Intel IPU,
Nvidia BlueField) with special-purpose blocks being deployed to offload or accelerate Layer 4 TCP and
Layer 7 HTTP processing, serverless frameworks are still constrained by duplicate protocol processing
when handling a workflow of functions at the cluster or data center level. Our approach seeks to rethink
the communication model between external clients and internal functions by separating protocol stacks
for external and internal communication at the cloud edge.

• Heavyweight Service Mesh: The loosely coupled design of the service mesh increases network latency
between functions due to the additional hop (caused by kernel and user space crossings) between the
user function and its respective sidecar [18, 8, 21]. This design also leads to additional CPU overhead,
making the service mesh a heavyweight component [18, 21].

Our solution

DPU

Worker node node agent

Shared memory Serverless control plane
Autoscaler Placement engineMetric server

Function

Node-wide Sidecar

Function…

Worker node node agent

Shared memory

Function Function……

HTTP/TCP data flows to/from external clients
Zero-copy data flows within data center
control flows eBPF-based sidecar

to/from clients to/from clients

config.

DPUNode-wide Sidecar

HTTP/TCP

RDMA RDMA

Cluster-wide Ingress Gateway
RDMA RDMA

HTTP/TCP

ZeroCopy-DSMS Gateway
RDMA

ZeroCopy-DSMS Gateway
shm access shm access

Figure 3: A architecture-level overview of ZEROCOPY-DSMS.

We propose ZEROCOPY-DSMS,
a distributed DPU-based service
mesh designed to offload heavy-
weight sidecar proxy processing
from CPUs to DPUs in a server-
less infrastructure. This approach
leverages the growing heterog-
enization of data center hard-
ware, utilizing existing DPUs with-
out requiring new hardware acqui-
sitions [4]. The goal of ZEROCOPY-DSMS is to create a full-function service mesh built on distributed
DPUs to enhance performance and scalability in serverless environments. The major contributions of
ZEROCOPY-DSMS include: (1) A novel architecture of the data plane for the infrastructure layer of
serverless computing, with modular sidecars (2) Partitioning infrastructure layer functionality and into mul-
tiple sidecar modules to leverage specialized accelerator blocks in SmartNICs (3) Eliminating redundant
TCP/HTTP packet processing in the cluster (4) Distributed shared-memory based approach for efficient
data transfer across functions. As shown in Figure 3, ZEROCOPY-DSMS uses a cluster-wide ingress
gateway for centralized HTTP/TCP protocol processing, which strips headers and transfers payloads di-
rectly to the RDMA domain.

Partitioning Sidecar functionality. Traditional service meshes use homogeneous, monolithic sidecars,
which are resource-intensive and complex to manage. ZEROCOPY-DSMS introduces a "heterogeneous"
service mesh (PD-mesh) that partitions sidecar functions across software (eBPF) and hardware accel-
erators (DPUs). Each function is paired with an eBPF-based sidecar, while a node-wide DPU-based
sidecar supports asynchronous tasks like observability, telemetry, and autoscaling. This setup allows ef-
ficient intra-node routing, redundant processing and eliminates the overhead of involving message broker
(shown in Figure 2) for inter-function networking.

Hewlett Packard Enterprise Confidential 3



Intra-node shared memory data plane: For intra-node communication, ZEROCOPY-DSMS uses a zero-
copy shared memory approach when interdependent functions are located on the same node. This sig-
nificantly reduces resource consumption and accelerates communication compared to traditional kernel-
based networking.

RDMA-based inter-node data plane: For inter-node traffic, ZEROCOPY-DSMS utilizes RDMA to main-
tain a zero-copy data plane across nodes, supporting RDMA over converged Ethernet (RoCE) to ensure
broad applicability in diverse data center environments. A lightweight per-node agent interfaces inter-
node traffic with the intra-node data plane. We use a lightweight per-node agent on the host to seamlessly
interface inter-node traffic with the intra-node data plane.

Approach for Implementation
ZEROCOPY-DSMS architecture involves multiple components and sub-systems. We have further outlined
the detailed system in the extended version [1]. We are building a new module in NGINX [9] to implement
the cluster-wide ingress gateway and perform protocol stack translation. We using DOCA APIs and
BlueFiled DPUs to enable efficient RDMA communication while optimizing the usage of scarce hardware
resources.

Competitive approaches
There has been many efforts focused on streamlining service mesh. SPRIGHT [18] uses lightweight
eBPF-based sidecars to replace heavyweight container-based sidecars in the service mesh data plane.
However, eBPF-based sidecars cannot support full-functional service mesh processing (particular in L7)
such as TLS termination, connection splicing. Overall, these approaches only consider a point solution
in the design space, while ZEROCOPY-DSMS fully considers the heterogeneous data plane components
and maximizes their advantages. There exists previous work focusing on using RDMA-based RPC to
improve data center RPC. FaSST [14], RFP [20], and eRPC [13] achieve high performance with RDMA
but still require migration of applications. Fuyao [16] uses DPU to enable direct function communication
in the serverless data plane. However, Fuyao [16] sets a sidecar for each function instance, which
has proved to be inefficient. Further, Fuyao [16] does not offer isolation or mediated transfer between
functions when needed, e.g., when functions are from different security domains. It only supports IPC
(with/without intra-node engine) between functions.

Current status and next steps
ZEROCOPY-DSMS, even with a naive offloading approach, reduces host CPU utilization with minimal per-
formance degradation. Utilizing L2/L3 acceleration on the DPU can further enhance ZEROCOPY-DSMS’s
performance, even when using less powerful DPU cores. Additionally, techniques such as targeted ker-
nel performance acceleration and optimized IRQ handling can significantly boost ZEROCOPY-DSMS’s
efficiency. Our prototype is being implemented and evaluated on a testbed featuring Mellanox Bluefield-
2 and Bluefield-3 DPUs. To further improve the ZEROCOPY-DSMS platform, we plan to incorporate
support for heterogeneous data processing units (DPUs), enabling workload resource management to
be vendor-agnostic. As various specialized devices, including DPUs [3, 7], are increasingly adopted in
cloud infrastructures, ZEROCOPY-DSMS can be seamlessly deployed in environments like the Green-
Lake cloud infrastructure, allowing providers to utilize existing DPUs without the need for new hardware
acquisitions. At TechCon, we aim to showcase the integration of ZEROCOPY-DSMS with the GreenLake
[2] platform.

Hewlett Packard Enterprise Confidential 4



References

[1] Extended version of the paper. Link to the Extended version of the paper, 2020. [EXTENDED VER-
SION OF THE PAPER].

[2] HPE Greenlake. Link, 2020. [ONLINE].

[3] Pensando introduces Distributed Services Platform available through HPE GreenLake and HPE
infrastructure solutions. Link, 2020. [ONLINE].

[4] NVIDIA BlueField Networking Platform. https://www.nvidia.com/en-us/networking/products/d
ata-processing-unit/, 2024. [ONLINE].

[5] What is FaaS? https://www.ibm.com/topics/faas, 2024. [ONLINE].

[6] Sol Boucher, Anuj Kalia, David G. Andersen, and Michael Kaminsky. Putting the "micro" back in
microservice. In 2018 USENIX Annual Technical Conference (USENIX ATC 18), pages 645–650,
Boston, MA, July 2018. USENIX Association.

[7] Idan Burstein. Nvidia data center processing unit (dpu) architecture. In 2021 IEEE Hot Chips 33
Symposium (HCS), pages 1–20, 2021.

[8] Jingrong Chen, Yongji Wu, Shihan Lin, Yechen Xu, Xinhao Kong, Thomas Anderson, Matthew Lentz,
Xiaowei Yang, and Danyang Zhuo. Remote procedure call as a managed system service. In 20th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 23), pages 141–
159, Boston, MA, April 2023. USENIX Association.

[9] F5 Networks, Inc. NGINX: Advanced Load Balancer, Web Server, & Reverse Proxy. https://www.
nginx.com/, 2022. [ONLINE].

[10] Zhipeng Jia and Emmett Witchel. Nightcore: Efficient and scalable serverless computing for latency-
sensitive, interactive microservices. In Proceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS ’21, page
152–166, New York, NY, USA, 2021. Association for Computing Machinery.

[11] Chao Jin, Zili Zhang, Xingyu Xiang, Songyun Zou, Gang Huang, Xuanzhe Liu, and Xin Jin. Ditto:
Efficient serverless analytics with elastic parallelism. In Proceedings of the ACM SIGCOMM 2023
Conference, ACM SIGCOMM ’23, page 406–419, New York, NY, USA, 2023. Association for Com-
puting Machinery.

[12] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag Khandelwal, Qifan Pu,
Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja Yadwadkar, Joseph E. Gonzalez, Raluca Ada
Popa, Ion Stoica, and David A. Patterson. Cloud programming simplified: A berkeley view on server-
less computing, 2019.

[13] Anuj Kalia, Michael Kaminsky, and David Andersen. Datacenter RPCs can be general and fast.
In 16th USENIX Symposium on Networked Systems Design and Implementation (NSDI 19), pages
1–16, Boston, MA, February 2019. USENIX Association.

[14] Anuj Kalia, Michael Kaminsky, and David G. Andersen. FaSST: Fast, scalable and simple distributed
transactions with Two-Sided (RDMA) datagram RPCs. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), pages 185–201, Savannah, GA, November 2016.
USENIX Association.

Hewlett Packard Enterprise Confidential 5

https://hpe-my.sharepoint.com/:w:/p/diman_zad-tootaghaj/ETzNFAksihhBl30UEbetPUoBSryY6IzAbjmbEi6sSvM01A?e=xvmYmB
https://www.hpe.com/us/en/greenlake.html
https://www.hpe.com/us/en/newsroom/press-release/2020/06/pensando-introduces-distributed-services-platform-available-through-hpe-greenlake-and-hpe-infrastructure-solutions.html
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.ibm.com/topics/faas
https://www.nginx.com/
https://www.nginx.com/


[15] Collin Lee and John Ousterhout. Granular computing. In Proceedings of the Workshop on Hot
Topics in Operating Systems, HotOS ’19, page 149–154, New York, NY, USA, 2019. Association for
Computing Machinery.

[16] Guowei Liu, Laiping Zhao, Yiming Li, Zhaolin Duan, Sheng Chen, Yitao Hu, Zhiyuan Su, and Wenyu
Qu. Fuyao: Dpu-enabled direct data transfer for serverless computing. In Proceedings of the 29th
ACM International Conference on Architectural Support for Programming Languages and Operat-
ing Systems, Volume 3, ASPLOS ’24, page 431–447, New York, NY, USA, 2024. Association for
Computing Machinery.

[17] Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye, Guoyao Xu, Liping Zhang, Yu Ding, Jian He, and
Chengzhong Xu. Characterizing microservice dependency and performance: Alibaba trace analysis.
SoCC ’21, page 412–426, New York, NY, USA, 2021. Association for Computing Machinery.

[18] Shixiong Qi, Leslie Monis, Ziteng Zeng, Ian-chin Wang, and K. K. Ramakrishnan. Spright: Ex-
tracting the server from serverless computing! high-performance ebpf-based event-driven, shared-
memory processing. In Proceedings of the ACM SIGCOMM 2022 Conference, SIGCOMM ’22, page
780–794, New York, NY, USA, 2022. Association for Computing Machinery.

[19] Alireza Sahraei, Soteris Demetriou, Amirali Sobhgol, Haoran Zhang, Abhigna Nagaraja, Neeraj
Pathak, Girish Joshi, Carla Souza, Bo Huang, Wyatt Cook, Andrii Golovei, Pradeep Venkat, An-
drew Mcfague, Dimitrios Skarlatos, Vipul Patel, Ravinder Thind, Ernesto Gonzalez, Yun Jin, and
Chunqiang Tang. Xfaas: Hyperscale and low cost serverless functions at meta. In Proceedings of
the 29th Symposium on Operating Systems Principles, SOSP ’23, page 231–246, New York, NY,
USA, 2023. Association for Computing Machinery.

[20] Maomeng Su, Mingxing Zhang, Kang Chen, Zhenyu Guo, and Yongwei Wu. Rfp: When rpc is faster
than server-bypass with rdma. In Proceedings of the Twelfth European Conference on Computer
Systems, EuroSys ’17, page 1–15, New York, NY, USA, 2017. Association for Computing Machinery.

[21] Xiangfeng Zhu, Guozhen She, Bowen Xue, Yu Zhang, Yongsu Zhang, Xuan Kelvin Zou, XiongChun
Duan, Peng He, Arvind Krishnamurthy, Matthew Lentz, Danyang Zhuo, and Ratul Mahajan. Dissect-
ing overheads of service mesh sidecars. In Proceedings of the 2023 ACM Symposium on Cloud
Computing, SoCC ’23, page 142–157, New York, NY, USA, 2023. Association for Computing Ma-
chinery.

Hewlett Packard Enterprise Confidential 6


