
Network Observability on a real-time 3D network topology
model of devices built via OpenTelemetry distributed tracing

Tech Con 2025 Abstract 147

HPE Edge;

Hewlett Packard Enterprise Confidential 1

2

Hewlett Packard Enterprise Confidential

Network Observability on a real-time 3D network topology model
of devices built via OpenTelemetry distributed tracing

Abstract
This paper introduces a comprehensive framework for enhancing network observability through the construction of a real-time 3D
network service graph topology model of a distributed system of network devices. The model integrates OpenTelemetry traces
enriched with device data, facilitating accurate location estimation, and then generating a 3D service graph that provides a
detailed and dynamic visualization of the network topology, contributing significantly to the observability and management of
complex network infrastructures.

Problem statement
Current network observability tools struggle to provide adequate visibility in complex environments, making it difficult to
accurately monitor, manage, and troubleshoot network performance. Existing models often lack the spatial context necessary for
precise device location tracking and dynamic visualization.

Our solution
This paper addresses these limitations by proposing a real-time 3D network service topology model that integrates OpenTelemetry
traces with network device data, enhancing network observability and management. This model allows for faster identification and
resolution of issues, reducing costly downtime and minimizing the need for manual troubleshooting efforts. This improved
observability can significantly optimize network performance, minimize operational costs, and enhance overall service quality,
providing a competitive advantage for businesses.

1. System Architecture
The proposed system architecture is designed to enhance network observability by combining real-time trace data with 3D
visualization techniques. It consists of the following key components:

• Network Devices: Emit OpenTelemetry traces enriched with device data.
• Trace Network Engine: Collects, processes, and enriches traces in real time. It will have a series of open-telemetry

collectors. It utilizes device data for calculating the 3D coordinates of devices.
• Service Graph Generator: Constructs the 3D network topology model and projects it onto a UI, promoting enhanced

network observability.

1.2 Trace Network Engine

The trace network engine plays a critical role in this network observability solution by
ingesting and analyzing traces in real time. By aggregating and correlating trace data, the
engine provides insights into the operational state of the network, highlighting potential
issues such as signal degradation or device disconnection. This engine will comprise of a
set of OpenTelemetry collectors, a trace processor, and a location aggregator. The
location aggregator enhances
observability by enabling precise tracking of device locations within the network. A
triangulation algorithm utilizes device data to calculate the 3D coordinates of devices,
which are crucial for understanding spatial relationships within the network.

{
 "traceId": "1af3b63c4f3545e4b6782d5a2c1e893f",
 "spanId": "33f5c9e5a5f44b71",
 "parentSpanId": "null",
 "kind": "SPAN_KIND_SERVER",
 "startTimeUnixNano": 1720085185367108600,
 "endTimeUnixNano": 1720085185434272800,
 "name": "OpenTelemetry Trace",
 "timestamp": "2024-08-12T14:48:32.123Z",
 "attributes": {
 "device_id": "device_01",
 "access_point_id": "ap_01",
 "rssi": -45,
 "frequency": 2412,
 "channel": 1,
 "device_mac_address": "00-B0-D0-63-C2-26" } }

3

Hewlett Packard Enterprise Confidential

1.3 Trilateration
Algorithm

The trilateration
algorithm, based on
device data, estimates
the position of devices
relative to a network
reference point (NRP),
thus contributing to the
network's spatial
observability. The rssi
data attribute provides
information on distance
of devices from a
common reference
point.

Inputs:
1. Positions of NRPs: A set of 3D coordinates Pi = (xi, yi, zi) for i = 1,2,3,…,ni where n is the number of

NRPs.
2. Distances to NRPs: A corresponding set of distances di from the device to each NRP.

Algorithm Steps:
1. Initialize the Device's Coordinates:

o Start with an initial guess for the device's coordinates Q0 = (x0, y0, z0) typically Q0 = (0, 0, 0).
2. Define the Loss Function:

o For any point Q = (x, y, z) in space, define the loss function:

o This function measures the difference between the actual distances and the estimated

distances from the device to the NRPs.
3. Minimize the Loss Function:

o Use an optimization method (e.g., the L-BFGS-B algorithm) to minimize the loss function
f(Q).

o The goal is to find the coordinates Q∗ = (x∗, y∗, z∗) that minimizes the sum of squared
differences.

4. Output:

The estimated position of the device, Q∗ is the solution to the minimization problem, representing the most likely
3D coordinates of the device based on the given distances.

1.4 Graph Construction
Algorithm

The graph construction
algorithm maps the
network's spatial and
logical topology,
enriching it with
metadata such as
device types,
connection quality, and
signal strength, all of
which are vital for
network observability.

Inputs:
1. Node Positions: 3D coordinates for each node (e.g., access points and devices).
2. Node Types: The type of each node, such as "AP" for access points and "Device" for connected

devices.
3. Edges and Attributes: Connections between nodes with associated trace data, such as latency,

packet loss, bandwidth, or other metrics.
Algorithm Steps:

1. Initialize the Graph:
o Create an empty graph G.

2. Add Nodes to the Graph:
o For each node i with position Pi = (xi, yi, zi) and type Ti :

§ Add the node ni to the graph G with attributes:
§ Position: Pi = (xi, yi, zi)
§ Type: Ti(e.g., "AP" or "Device").

3. Add Edges between Nodes:
o For each pair of connected nodes (ni, nj) with associated trace data:

§ Add an edge between ni and nj in the graph G.
§ Store trace attributes as edge attributes, such as:

§ Latency (lij): Time delay between the nodes.
§ Packet Loss (pij): Percentage of packets lost during transmission.
§ Bandwidth (bij): Maximum data transfer rate.
§ Other Metrics: Additional data points like jitter, throughput, etc.

4. Retrieve Node Positions:
o Extract the positions of all nodes from the graph G for visualization.

5. Visualize the 3D Graph:
o Initialize a 3D plotting environment using Matplotlib.
o For each node ni:

§ Plot the node's position Pi in 3D space and label the node with its identifier.
o For each edge (ni, nj):

§ Draw a line representing the connection between nodes ni and nj.
§ Optionally, colour or style the edge based on trace attributes (e.g., latency colour

gradients).
6. Display Trace Information:

o Annotate or provide visual cues (like color-coded lines) to represent trace attributes such
as high latency, significant packet loss, or other critical metrics.

7. Display the 3D Graph:
o Render the 3D graph using Matplotlib, displaying spatial relationships and connections

between access points and devices with trace attributes.

4

Hewlett Packard Enterprise Confidential

1.5 Real-Time UI (User
Interface)
Projection Algorithm

The 3D service graph is
projected onto a user
interface (UI), providing
a dynamic and
interactive platform for
network observability in
real-time. By leveraging
WebSockets, the UI is
capable of rendering
network changes as they
happen, ensuring that
the network
administrator has up-to-
the-minute insights into
the network's state.

Inputs:
1. WebSocket Server: URL of the server providing real-time network data.
2. Data Format:

o Nodes: Array of node objects with id, position, and type attributes.
o Edges: Array of edge objects with id and positions attributes.

Algorithm Steps:
1. Initialize State:

o Nodes: Create an empty state variable nodes to store node data.
o Edges: Create an empty state variable edges to store edge data.

2. Setup WebSocket Connection:
o Connect: Establish a WebSocket connection to the server using the provided URL.
o Handle Data: Listen for network-update events from the server.

§ Update State: Update nodes and edges state variables with the new data
received.

3. Cleanup:
o Disconnect: Ensure the WebSocket connection is properly closed when the component is

unmounted to prevent memory leaks.
4. Render 3D Graph:

o Create 3D Scene: Use @react-three/fiber to render a 3D scene.
§ Render Nodes: For each node in the nodes array:

§ Mesh: Create a mesh using sphereGeometry to represent the node.
§ Material: Apply meshStandardMaterial with colours based on node

type (e.g., "AP" in blue, "Device" in green).
§ Render Edges: For each edge in the edges array:

§ Line: Create a line using bufferGeometry to represent the connection
between nodes.

§ Material: Apply lineBasicMaterial to style the edge.
5. Display the 3D Graph:

o Canvas: Use Canvas from @react-three/fiber to display the rendered 3D graph.

1.5.1 Summary of Real-Time Aspects
The real-time aspects of this network observability solution are critical for maintaining an up-to-date view of the network where
devices often connect or disconnect, or where the signal strength may vary due to environmental factors. Key Considerations for
Real-Time Implementation include OpenTelemetry data streaming, WebSocket integration and efficient rendering.

Evidence the solution works
The proposed solution's effectiveness will be substantiated through empirical data obtained from simulations, real-world
experiments, and benchmark analyses. While the theoretical foundations of the approach are sound, efforts are currently
underway to develop a proof of concept (POC) to implement the same.

Competitive approaches
This paper presents a novel approach to real-time network monitoring by integrating device data into OpenTelemetry traces and
visualizing the real-time 3D network topology.

Current status
The solution has been designed, and preparations are underway to conduct experimental evaluations.

Next steps
We could also integrate machine learning techniques for predicting device movement and optimizing the placement of network
devices to enhance coverage and reduce interference.

