working - moved to compose

This commit is contained in:
2025-08-23 16:07:51 -07:00
parent 939163806b
commit 2f5db981a4
8 changed files with 770 additions and 0 deletions

View File

@@ -0,0 +1,73 @@
import numpy as np
class SinglespeedAnalyzer:
def __init__(self):
self.chainring_options = [38, 46] # teeth
self.common_cogs = list(range(11, 28)) # 11t to 27t rear cogs
self.wheel_circumference_m = 2.096 # 700x25c tire
def analyze_gear_ratio(self, speed_data, cadence_data, gradient_data):
"""Determine most likely singlespeed gear ratio"""
# Validate input parameters
if not speed_data or not cadence_data or not gradient_data:
raise ValueError("Input data cannot be empty")
if len(speed_data) != len(cadence_data) or len(speed_data) != len(gradient_data):
raise ValueError("Input data arrays must be of equal length")
# Filter for flat terrain segments (gradient < 3%)
flat_indices = [i for i, grad in enumerate(gradient_data) if abs(grad) < 3.0]
flat_speeds = [speed_data[i] for i in flat_indices]
flat_cadences = [cadence_data[i] for i in flat_indices]
# Only consider data points with sufficient speed (15 km/h) and cadence
valid_indices = [i for i in range(len(flat_speeds))
if flat_speeds[i] > 4.17 and flat_cadences[i] > 0] # 15 km/h threshold
if not valid_indices:
return None # Not enough data
valid_speeds = [flat_speeds[i] for i in valid_indices]
valid_cadences = [flat_cadences[i] for i in valid_indices]
# Calculate gear ratios from speed and cadence
gear_ratios = []
for speed, cadence in zip(valid_speeds, valid_cadences):
# Gear ratio = (speed in m/s * 60 seconds/minute) / (cadence in rpm * wheel circumference in meters)
gr = (speed * 60) / (cadence * self.wheel_circumference_m)
gear_ratios.append(gr)
# Calculate average gear ratio
avg_gear_ratio = sum(gear_ratios) / len(gear_ratios)
# Find best matching chainring and cog combination
best_fit = None
min_diff = float('inf')
for chainring in self.chainring_options:
for cog in self.common_cogs:
theoretical_ratio = chainring / cog
diff = abs(theoretical_ratio - avg_gear_ratio)
if diff < min_diff:
min_diff = diff
best_fit = (chainring, cog, theoretical_ratio)
if not best_fit:
return None
chainring, cog, ratio = best_fit
# Calculate gear metrics
wheel_diameter_inches = 27.0 # 700c wheel diameter
gear_inches = ratio * wheel_diameter_inches
development_meters = ratio * self.wheel_circumference_m
# Calculate confidence score (1 - relative error)
confidence = max(0, 1 - (min_diff / ratio)) if ratio > 0 else 0
return {
'estimated_chainring_teeth': chainring,
'estimated_cassette_teeth': cog,
'gear_ratio': ratio,
'gear_inches': gear_inches,
'development_meters': development_meters,
'confidence_score': confidence
}

View File

@@ -0,0 +1,44 @@
import numpy as np
class PowerEstimator:
def __init__(self):
self.bike_weight_kg = 10.0 # 22 lbs
self.rider_weight_kg = 75.0 # Default assumption
self.drag_coefficient = 0.88 # Road bike
self.frontal_area_m2 = 0.4 # Typical road cycling position
self.rolling_resistance = 0.004 # Road tires
self.drivetrain_efficiency = 0.97
self.air_density = 1.225 # kg/m³ at sea level, 20°C
def calculate_power(self, speed_ms, gradient_percent,
air_temp_c=20, altitude_m=0):
"""Calculate estimated power using physics model"""
# Validate input parameters
if not isinstance(speed_ms, (int, float)) or speed_ms < 0:
raise ValueError("Speed must be a non-negative number")
if not isinstance(gradient_percent, (int, float)):
raise ValueError("Gradient must be a number")
# Calculate air density based on temperature and altitude
temp_k = air_temp_c + 273.15
pressure = 101325 * (1 - 0.0000225577 * altitude_m) ** 5.25588
air_density = pressure / (287.05 * temp_k)
# Convert gradient to angle
gradient_rad = np.arctan(gradient_percent / 100.0)
# Total mass
total_mass = self.bike_weight_kg + self.rider_weight_kg
# Power components
P_roll = self.rolling_resistance * total_mass * 9.81 * np.cos(gradient_rad) * speed_ms
P_grav = total_mass * 9.81 * np.sin(gradient_rad) * speed_ms
P_aero = 0.5 * air_density * self.drag_coefficient * self.frontal_area_m2 * speed_ms ** 3
# Power = (Rolling + Gravity + Aerodynamic) / Drivetrain efficiency
return (P_roll + P_grav + P_aero) / self.drivetrain_efficiency
def estimate_peak_power(self, power_values, durations):
"""Calculate peak power for various durations"""
# This will be implemented in Phase 3
return {}