Complete spec: Code alignment and documentation cleanup

- Ensure code aligns with CentralDB models
- Document code alignment with CentralDB models
- Remove informal reference documents (data-model.md, DB_API_SPEC.json, GARMINSYNC_SPEC.md)
- Run linters and formatters (black, isort, mypy)
- Update project configuration files
- Add .dockerignore for Docker builds
- Perform code formatting and import sorting
- Fix type checking issues
- Update documentation files
- Complete implementation tasks as per spec
This commit is contained in:
2025-12-18 13:21:54 -08:00
parent b0aa585372
commit ca9d7d9e90
58 changed files with 2726 additions and 377 deletions

View File

@@ -12,13 +12,13 @@ You **MUST** consider the user input before proceeding (if not empty).
## Goal
Identify inconsistencies, duplications, ambiguities, and underspecified items across the three core artifacts (`spec.md`, `plan.md`, `tasks.md`) before implementation. This command MUST run only after `/tasks` has successfully produced a complete `tasks.md`.
Identify inconsistencies, duplications, ambiguities, and underspecified items across the three core artifacts (`spec.md`, `plan.md`, `tasks.md`) before implementation. This command MUST run only after `/speckit.tasks` has successfully produced a complete `tasks.md`.
## Operating Constraints
**STRICTLY READ-ONLY**: Do **not** modify any files. Output a structured analysis report. Offer an optional remediation plan (user must explicitly approve before any follow-up editing commands would be invoked manually).
**Constitution Authority**: The project constitution (`.specify/memory/constitution.md`) is **non-negotiable** within this analysis scope. Constitution conflicts are automatically CRITICAL and require adjustment of the spec, plan, or tasks—not dilution, reinterpretation, or silent ignoring of the principle. If a principle itself needs to change, that must occur in a separate, explicit constitution update outside `/analyze`.
**Constitution Authority**: The project constitution (`.specify/memory/constitution.md`) is **non-negotiable** within this analysis scope. Constitution conflicts are automatically CRITICAL and require adjustment of the spec, plan, or tasks—not dilution, reinterpretation, or silent ignoring of the principle. If a principle itself needs to change, that must occur in a separate, explicit constitution update outside `/speckit.analyze`.
## Execution Steps
@@ -154,9 +154,9 @@ Output a Markdown report (no file writes) with the following structure:
At end of report, output a concise Next Actions block:
- If CRITICAL issues exist: Recommend resolving before `/implement`
- If CRITICAL issues exist: Recommend resolving before `/speckit.implement`
- If only LOW/MEDIUM: User may proceed, but provide improvement suggestions
- Provide explicit command suggestions: e.g., "Run /specify with refinement", "Run /plan to adjust architecture", "Manually edit tasks.md to add coverage for 'performance-metrics'"
- Provide explicit command suggestions: e.g., "Run /speckit.specify with refinement", "Run /speckit.plan to adjust architecture", "Manually edit tasks.md to add coverage for 'performance-metrics'"
### 8. Offer Remediation

View File

@@ -7,12 +7,14 @@ description: Generate a custom checklist for the current feature based on user r
**CRITICAL CONCEPT**: Checklists are **UNIT TESTS FOR REQUIREMENTS WRITING** - they validate the quality, clarity, and completeness of requirements in a given domain.
**NOT for verification/testing**:
- ❌ NOT "Verify the button clicks correctly"
- ❌ NOT "Test error handling works"
- ❌ NOT "Confirm the API returns 200"
- ❌ NOT checking if code/implementation matches the spec
**FOR requirements quality validation**:
- ✅ "Are visual hierarchy requirements defined for all card types?" (completeness)
- ✅ "Is 'prominent display' quantified with specific sizing/positioning?" (clarity)
- ✅ "Are hover state requirements consistent across all interactive elements?" (consistency)
@@ -77,7 +79,7 @@ You **MUST** consider the user input before proceeding (if not empty).
- spec.md: Feature requirements and scope
- plan.md (if exists): Technical details, dependencies
- tasks.md (if exists): Implementation tasks
**Context Loading Strategy**:
- Load only necessary portions relevant to active focus areas (avoid full-file dumping)
- Prefer summarizing long sections into concise scenario/requirement bullets
@@ -88,7 +90,7 @@ You **MUST** consider the user input before proceeding (if not empty).
- Create `FEATURE_DIR/checklists/` directory if it doesn't exist
- Generate unique checklist filename:
- Use short, descriptive name based on domain (e.g., `ux.md`, `api.md`, `security.md`)
- Format: `[domain].md`
- Format: `[domain].md`
- If file exists, append to existing file
- Number items sequentially starting from CHK001
- Each `/speckit.checklist` run creates a NEW file (never overwrites existing checklists)
@@ -100,7 +102,7 @@ You **MUST** consider the user input before proceeding (if not empty).
- **Consistency**: Do requirements align with each other?
- **Measurability**: Can requirements be objectively verified?
- **Coverage**: Are all scenarios/edge cases addressed?
**Category Structure** - Group items by requirement quality dimensions:
- **Requirement Completeness** (Are all necessary requirements documented?)
- **Requirement Clarity** (Are requirements specific and unambiguous?)
@@ -111,14 +113,14 @@ You **MUST** consider the user input before proceeding (if not empty).
- **Non-Functional Requirements** (Performance, Security, Accessibility, etc. - are they specified?)
- **Dependencies & Assumptions** (Are they documented and validated?)
- **Ambiguities & Conflicts** (What needs clarification?)
**HOW TO WRITE CHECKLIST ITEMS - "Unit Tests for English"**:
**WRONG** (Testing implementation):
- "Verify landing page displays 3 episode cards"
- "Test hover states work on desktop"
- "Confirm logo click navigates home"
**CORRECT** (Testing requirements quality):
- "Are the exact number and layout of featured episodes specified?" [Completeness]
- "Is 'prominent display' quantified with specific sizing/positioning?" [Clarity]
@@ -127,7 +129,7 @@ You **MUST** consider the user input before proceeding (if not empty).
- "Is the fallback behavior specified when logo image fails to load?" [Edge Cases]
- "Are loading states defined for asynchronous episode data?" [Completeness]
- "Does the spec define visual hierarchy for competing UI elements?" [Clarity]
**ITEM STRUCTURE**:
Each item should follow this pattern:
- Question format asking about requirement quality
@@ -135,28 +137,28 @@ You **MUST** consider the user input before proceeding (if not empty).
- Include quality dimension in brackets [Completeness/Clarity/Consistency/etc.]
- Reference spec section `[Spec §X.Y]` when checking existing requirements
- Use `[Gap]` marker when checking for missing requirements
**EXAMPLES BY QUALITY DIMENSION**:
Completeness:
- "Are error handling requirements defined for all API failure modes? [Gap]"
- "Are accessibility requirements specified for all interactive elements? [Completeness]"
- "Are mobile breakpoint requirements defined for responsive layouts? [Gap]"
Clarity:
- "Is 'fast loading' quantified with specific timing thresholds? [Clarity, Spec §NFR-2]"
- "Are 'related episodes' selection criteria explicitly defined? [Clarity, Spec §FR-5]"
- "Is 'prominent' defined with measurable visual properties? [Ambiguity, Spec §FR-4]"
Consistency:
- "Do navigation requirements align across all pages? [Consistency, Spec §FR-10]"
- "Are card component requirements consistent between landing and detail pages? [Consistency]"
Coverage:
- "Are requirements defined for zero-state scenarios (no episodes)? [Coverage, Edge Case]"
- "Are concurrent user interaction scenarios addressed? [Coverage, Gap]"
- "Are requirements specified for partial data loading failures? [Coverage, Exception Flow]"
Measurability:
- "Are visual hierarchy requirements measurable/testable? [Acceptance Criteria, Spec §FR-1]"
- "Can 'balanced visual weight' be objectively verified? [Measurability, Spec §FR-2]"
@@ -192,7 +194,7 @@ You **MUST** consider the user input before proceeding (if not empty).
- ❌ "Click", "navigate", "render", "load", "execute"
- ❌ Test cases, test plans, QA procedures
- ❌ Implementation details (frameworks, APIs, algorithms)
**✅ REQUIRED PATTERNS** - These test requirements quality:
- ✅ "Are [requirement type] defined/specified/documented for [scenario]?"
- ✅ "Is [vague term] quantified/clarified with specific criteria?"
@@ -222,6 +224,7 @@ To avoid clutter, use descriptive types and clean up obsolete checklists when do
**UX Requirements Quality:** `ux.md`
Sample items (testing the requirements, NOT the implementation):
- "Are visual hierarchy requirements defined with measurable criteria? [Clarity, Spec §FR-1]"
- "Is the number and positioning of UI elements explicitly specified? [Completeness, Spec §FR-1]"
- "Are interaction state requirements (hover, focus, active) consistently defined? [Consistency]"
@@ -232,6 +235,7 @@ Sample items (testing the requirements, NOT the implementation):
**API Requirements Quality:** `api.md`
Sample items:
- "Are error response formats specified for all failure scenarios? [Completeness]"
- "Are rate limiting requirements quantified with specific thresholds? [Clarity]"
- "Are authentication requirements consistent across all endpoints? [Consistency]"
@@ -241,6 +245,7 @@ Sample items:
**Performance Requirements Quality:** `performance.md`
Sample items:
- "Are performance requirements quantified with specific metrics? [Clarity]"
- "Are performance targets defined for all critical user journeys? [Coverage]"
- "Are performance requirements under different load conditions specified? [Completeness]"
@@ -250,6 +255,7 @@ Sample items:
**Security Requirements Quality:** `security.md`
Sample items:
- "Are authentication requirements specified for all protected resources? [Coverage]"
- "Are data protection requirements defined for sensitive information? [Completeness]"
- "Is the threat model documented and requirements aligned to it? [Traceability]"
@@ -279,9 +285,10 @@ Sample items:
```
**Key Differences:**
- Wrong: Tests if the system works correctly
- Correct: Tests if the requirements are written correctly
- Wrong: Verification of behavior
- Correct: Validation of requirement quality
- Wrong: "Does it do X?"
- Wrong: "Does it do X?"
- Correct: "Is X clearly specified?"

View File

@@ -1,5 +1,9 @@
---
description: Identify underspecified areas in the current feature spec by asking up to 5 highly targeted clarification questions and encoding answers back into the spec.
handoffs:
- label: Build Technical Plan
agent: speckit.plan
prompt: Create a plan for the spec. I am building with...
---
## User Input
@@ -84,50 +88,63 @@ Execution steps:
3. Generate (internally) a prioritized queue of candidate clarification questions (maximum 5). Do NOT output them all at once. Apply these constraints:
- Maximum of 10 total questions across the whole session.
- Each question must be answerable with EITHER:
* A short multiplechoice selection (25 distinct, mutually exclusive options), OR
* A one-word / shortphrase answer (explicitly constrain: "Answer in <=5 words").
- Only include questions whose answers materially impact architecture, data modeling, task decomposition, test design, UX behavior, operational readiness, or compliance validation.
- Ensure category coverage balance: attempt to cover the highest impact unresolved categories first; avoid asking two low-impact questions when a single high-impact area (e.g., security posture) is unresolved.
- Exclude questions already answered, trivial stylistic preferences, or plan-level execution details (unless blocking correctness).
- Favor clarifications that reduce downstream rework risk or prevent misaligned acceptance tests.
- If more than 5 categories remain unresolved, select the top 5 by (Impact * Uncertainty) heuristic.
- A short multiplechoice selection (25 distinct, mutually exclusive options), OR
- A one-word / shortphrase answer (explicitly constrain: "Answer in <=5 words").
- Only include questions whose answers materially impact architecture, data modeling, task decomposition, test design, UX behavior, operational readiness, or compliance validation.
- Ensure category coverage balance: attempt to cover the highest impact unresolved categories first; avoid asking two low-impact questions when a single high-impact area (e.g., security posture) is unresolved.
- Exclude questions already answered, trivial stylistic preferences, or plan-level execution details (unless blocking correctness).
- Favor clarifications that reduce downstream rework risk or prevent misaligned acceptance tests.
- If more than 5 categories remain unresolved, select the top 5 by (Impact * Uncertainty) heuristic.
4. Sequential questioning loop (interactive):
- Present EXACTLY ONE question at a time.
- For multiplechoice questions render options as a Markdown table:
- For multiplechoice questions:
- **Analyze all options** and determine the **most suitable option** based on:
- Best practices for the project type
- Common patterns in similar implementations
- Risk reduction (security, performance, maintainability)
- Alignment with any explicit project goals or constraints visible in the spec
- Present your **recommended option prominently** at the top with clear reasoning (1-2 sentences explaining why this is the best choice).
- Format as: `**Recommended:** Option [X] - <reasoning>`
- Then render all options as a Markdown table:
| Option | Description |
|--------|-------------|
| A | <Option A description> |
| B | <Option B description> |
| C | <Option C description> | (add D/E as needed up to 5)
| Short | Provide a different short answer (<=5 words) | (Include only if free-form alternative is appropriate)
| C | <Option C description> (add D/E as needed up to 5) |
| Short | Provide a different short answer (<=5 words) (Include only if free-form alternative is appropriate) |
- For shortanswer style (no meaningful discrete options), output a single line after the question: `Format: Short answer (<=5 words)`.
- After the table, add: `You can reply with the option letter (e.g., "A"), accept the recommendation by saying "yes" or "recommended", or provide your own short answer.`
- For shortanswer style (no meaningful discrete options):
- Provide your **suggested answer** based on best practices and context.
- Format as: `**Suggested:** <your proposed answer> - <brief reasoning>`
- Then output: `Format: Short answer (<=5 words). You can accept the suggestion by saying "yes" or "suggested", or provide your own answer.`
- After the user answers:
* Validate the answer maps to one option or fits the <=5 word constraint.
* If ambiguous, ask for a quick disambiguation (count still belongs to same question; do not advance).
* Once satisfactory, record it in working memory (do not yet write to disk) and move to the next queued question.
- If the user replies with "yes", "recommended", or "suggested", use your previously stated recommendation/suggestion as the answer.
- Otherwise, validate the answer maps to one option or fits the <=5 word constraint.
- If ambiguous, ask for a quick disambiguation (count still belongs to same question; do not advance).
- Once satisfactory, record it in working memory (do not yet write to disk) and move to the next queued question.
- Stop asking further questions when:
* All critical ambiguities resolved early (remaining queued items become unnecessary), OR
* User signals completion ("done", "good", "no more"), OR
* You reach 5 asked questions.
- All critical ambiguities resolved early (remaining queued items become unnecessary), OR
- User signals completion ("done", "good", "no more"), OR
- You reach 5 asked questions.
- Never reveal future queued questions in advance.
- If no valid questions exist at start, immediately report no critical ambiguities.
5. Integration after EACH accepted answer (incremental update approach):
- Maintain in-memory representation of the spec (loaded once at start) plus the raw file contents.
- For the first integrated answer in this session:
* Ensure a `## Clarifications` section exists (create it just after the highest-level contextual/overview section per the spec template if missing).
* Under it, create (if not present) a `### Session YYYY-MM-DD` subheading for today.
- Ensure a `## Clarifications` section exists (create it just after the highest-level contextual/overview section per the spec template if missing).
- Under it, create (if not present) a `### Session YYYY-MM-DD` subheading for today.
- Append a bullet line immediately after acceptance: `- Q: <question> → A: <final answer>`.
- Then immediately apply the clarification to the most appropriate section(s):
* Functional ambiguity → Update or add a bullet in Functional Requirements.
* User interaction / actor distinction → Update User Stories or Actors subsection (if present) with clarified role, constraint, or scenario.
* Data shape / entities → Update Data Model (add fields, types, relationships) preserving ordering; note added constraints succinctly.
* Non-functional constraint → Add/modify measurable criteria in Non-Functional / Quality Attributes section (convert vague adjective to metric or explicit target).
* Edge case / negative flow → Add a new bullet under Edge Cases / Error Handling (or create such subsection if template provides placeholder for it).
* Terminology conflict → Normalize term across spec; retain original only if necessary by adding `(formerly referred to as "X")` once.
- Functional ambiguity → Update or add a bullet in Functional Requirements.
- User interaction / actor distinction → Update User Stories or Actors subsection (if present) with clarified role, constraint, or scenario.
- Data shape / entities → Update Data Model (add fields, types, relationships) preserving ordering; note added constraints succinctly.
- Non-functional constraint → Add/modify measurable criteria in Non-Functional / Quality Attributes section (convert vague adjective to metric or explicit target).
- Edge case / negative flow → Add a new bullet under Edge Cases / Error Handling (or create such subsection if template provides placeholder for it).
- Terminology conflict → Normalize term across spec; retain original only if necessary by adding `(formerly referred to as "X")` once.
- If the clarification invalidates an earlier ambiguous statement, replace that statement instead of duplicating; leave no obsolete contradictory text.
- Save the spec file AFTER each integration to minimize risk of context loss (atomic overwrite).
- Preserve formatting: do not reorder unrelated sections; keep heading hierarchy intact.
@@ -152,12 +169,13 @@ Execution steps:
- Suggested next command.
Behavior rules:
- If no meaningful ambiguities found (or all potential questions would be low-impact), respond: "No critical ambiguities detected worth formal clarification." and suggest proceeding.
- If spec file missing, instruct user to run `/speckit.specify` first (do not create a new spec here).
- Never exceed 5 total asked questions (clarification retries for a single question do not count as new questions).
- Avoid speculative tech stack questions unless the absence blocks functional clarity.
- Respect user early termination signals ("stop", "done", "proceed").
- If no questions asked due to full coverage, output a compact coverage summary (all categories Clear) then suggest advancing.
- If quota reached with unresolved high-impact categories remaining, explicitly flag them under Deferred with rationale.
- If no questions asked due to full coverage, output a compact coverage summary (all categories Clear) then suggest advancing.
- If quota reached with unresolved high-impact categories remaining, explicitly flag them under Deferred with rationale.
Context for prioritization: $ARGUMENTS

View File

@@ -1,5 +1,9 @@
---
description: Create or update the project constitution from interactive or provided principle inputs, ensuring all dependent templates stay in sync.
handoffs:
- label: Build Specification
agent: speckit.specify
prompt: Implement the feature specification based on the updated constitution. I want to build...
---
## User Input
@@ -25,9 +29,9 @@ Follow this execution flow:
- Otherwise infer from existing repo context (README, docs, prior constitution versions if embedded).
- For governance dates: `RATIFICATION_DATE` is the original adoption date (if unknown ask or mark TODO), `LAST_AMENDED_DATE` is today if changes are made, otherwise keep previous.
- `CONSTITUTION_VERSION` must increment according to semantic versioning rules:
* MAJOR: Backward incompatible governance/principle removals or redefinitions.
* MINOR: New principle/section added or materially expanded guidance.
* PATCH: Clarifications, wording, typo fixes, non-semantic refinements.
- MAJOR: Backward incompatible governance/principle removals or redefinitions.
- MINOR: New principle/section added or materially expanded guidance.
- PATCH: Clarifications, wording, typo fixes, non-semantic refinements.
- If version bump type ambiguous, propose reasoning before finalizing.
3. Draft the updated constitution content:
@@ -65,6 +69,7 @@ Follow this execution flow:
- Suggested commit message (e.g., `docs: amend constitution to vX.Y.Z (principle additions + governance update)`).
Formatting & Style Requirements:
- Use Markdown headings exactly as in the template (do not demote/promote levels).
- Wrap long rationale lines to keep readability (<100 chars ideally) but do not hard enforce with awkward breaks.
- Keep a single blank line between sections.

View File

@@ -17,31 +17,33 @@ You **MUST** consider the user input before proceeding (if not empty).
2. **Check checklists status** (if FEATURE_DIR/checklists/ exists):
- Scan all checklist files in the checklists/ directory
- For each checklist, count:
* Total items: All lines matching `- [ ]` or `- [X]` or `- [x]`
* Completed items: Lines matching `- [X]` or `- [x]`
* Incomplete items: Lines matching `- [ ]`
- Total items: All lines matching `- [ ]` or `- [X]` or `- [x]`
- Completed items: Lines matching `- [X]` or `- [x]`
- Incomplete items: Lines matching `- [ ]`
- Create a status table:
```
```text
| Checklist | Total | Completed | Incomplete | Status |
|-----------|-------|-----------|------------|--------|
| ux.md | 12 | 12 | 0 | ✓ PASS |
| test.md | 8 | 5 | 3 | ✗ FAIL |
| security.md | 6 | 6 | 0 | ✓ PASS |
```
- Calculate overall status:
* **PASS**: All checklists have 0 incomplete items
* **FAIL**: One or more checklists have incomplete items
- **PASS**: All checklists have 0 incomplete items
- **FAIL**: One or more checklists have incomplete items
- **If any checklist is incomplete**:
* Display the table with incomplete item counts
* **STOP** and ask: "Some checklists are incomplete. Do you want to proceed with implementation anyway? (yes/no)"
* Wait for user response before continuing
* If user says "no" or "wait" or "stop", halt execution
* If user says "yes" or "proceed" or "continue", proceed to step 3
- Display the table with incomplete item counts
- **STOP** and ask: "Some checklists are incomplete. Do you want to proceed with implementation anyway? (yes/no)"
- Wait for user response before continuing
- If user says "no" or "wait" or "stop", halt execution
- If user says "yes" or "proceed" or "continue", proceed to step 3
- **If all checklists are complete**:
* Display the table showing all checklists passed
* Automatically proceed to step 3
- Display the table showing all checklists passed
- Automatically proceed to step 3
3. Load and analyze the implementation context:
- **REQUIRED**: Read tasks.md for the complete task list and execution plan
@@ -51,27 +53,71 @@ You **MUST** consider the user input before proceeding (if not empty).
- **IF EXISTS**: Read research.md for technical decisions and constraints
- **IF EXISTS**: Read quickstart.md for integration scenarios
4. Parse tasks.md structure and extract:
4. **Project Setup Verification**:
- **REQUIRED**: Create/verify ignore files based on actual project setup:
**Detection & Creation Logic**:
- Check if the following command succeeds to determine if the repository is a git repo (create/verify .gitignore if so):
```sh
git rev-parse --git-dir 2>/dev/null
```
- Check if Dockerfile* exists or Docker in plan.md → create/verify .dockerignore
- Check if .eslintrc* exists → create/verify .eslintignore
- Check if eslint.config.* exists → ensure the config's `ignores` entries cover required patterns
- Check if .prettierrc* exists → create/verify .prettierignore
- Check if .npmrc or package.json exists → create/verify .npmignore (if publishing)
- Check if terraform files (*.tf) exist → create/verify .terraformignore
- Check if .helmignore needed (helm charts present) → create/verify .helmignore
**If ignore file already exists**: Verify it contains essential patterns, append missing critical patterns only
**If ignore file missing**: Create with full pattern set for detected technology
**Common Patterns by Technology** (from plan.md tech stack):
- **Node.js/JavaScript/TypeScript**: `node_modules/`, `dist/`, `build/`, `*.log`, `.env*`
- **Python**: `__pycache__/`, `*.pyc`, `.venv/`, `venv/`, `dist/`, `*.egg-info/`
- **Java**: `target/`, `*.class`, `*.jar`, `.gradle/`, `build/`
- **C#/.NET**: `bin/`, `obj/`, `*.user`, `*.suo`, `packages/`
- **Go**: `*.exe`, `*.test`, `vendor/`, `*.out`
- **Ruby**: `.bundle/`, `log/`, `tmp/`, `*.gem`, `vendor/bundle/`
- **PHP**: `vendor/`, `*.log`, `*.cache`, `*.env`
- **Rust**: `target/`, `debug/`, `release/`, `*.rs.bk`, `*.rlib`, `*.prof*`, `.idea/`, `*.log`, `.env*`
- **Kotlin**: `build/`, `out/`, `.gradle/`, `.idea/`, `*.class`, `*.jar`, `*.iml`, `*.log`, `.env*`
- **C++**: `build/`, `bin/`, `obj/`, `out/`, `*.o`, `*.so`, `*.a`, `*.exe`, `*.dll`, `.idea/`, `*.log`, `.env*`
- **C**: `build/`, `bin/`, `obj/`, `out/`, `*.o`, `*.a`, `*.so`, `*.exe`, `Makefile`, `config.log`, `.idea/`, `*.log`, `.env*`
- **Swift**: `.build/`, `DerivedData/`, `*.swiftpm/`, `Packages/`
- **R**: `.Rproj.user/`, `.Rhistory`, `.RData`, `.Ruserdata`, `*.Rproj`, `packrat/`, `renv/`
- **Universal**: `.DS_Store`, `Thumbs.db`, `*.tmp`, `*.swp`, `.vscode/`, `.idea/`
**Tool-Specific Patterns**:
- **Docker**: `node_modules/`, `.git/`, `Dockerfile*`, `.dockerignore`, `*.log*`, `.env*`, `coverage/`
- **ESLint**: `node_modules/`, `dist/`, `build/`, `coverage/`, `*.min.js`
- **Prettier**: `node_modules/`, `dist/`, `build/`, `coverage/`, `package-lock.json`, `yarn.lock`, `pnpm-lock.yaml`
- **Terraform**: `.terraform/`, `*.tfstate*`, `*.tfvars`, `.terraform.lock.hcl`
- **Kubernetes/k8s**: `*.secret.yaml`, `secrets/`, `.kube/`, `kubeconfig*`, `*.key`, `*.crt`
5. Parse tasks.md structure and extract:
- **Task phases**: Setup, Tests, Core, Integration, Polish
- **Task dependencies**: Sequential vs parallel execution rules
- **Task details**: ID, description, file paths, parallel markers [P]
- **Execution flow**: Order and dependency requirements
5. Execute implementation following the task plan:
6. Execute implementation following the task plan:
- **Phase-by-phase execution**: Complete each phase before moving to the next
- **Respect dependencies**: Run sequential tasks in order, parallel tasks [P] can run together
- **Follow TDD approach**: Execute test tasks before their corresponding implementation tasks
- **File-based coordination**: Tasks affecting the same files must run sequentially
- **Validation checkpoints**: Verify each phase completion before proceeding
6. Implementation execution rules:
7. Implementation execution rules:
- **Setup first**: Initialize project structure, dependencies, configuration
- **Tests before code**: If you need to write tests for contracts, entities, and integration scenarios
- **Core development**: Implement models, services, CLI commands, endpoints
- **Integration work**: Database connections, middleware, logging, external services
- **Polish and validation**: Unit tests, performance optimization, documentation
7. Progress tracking and error handling:
8. Progress tracking and error handling:
- Report progress after each completed task
- Halt execution if any non-parallel task fails
- For parallel tasks [P], continue with successful tasks, report failed ones
@@ -79,11 +125,11 @@ You **MUST** consider the user input before proceeding (if not empty).
- Suggest next steps if implementation cannot proceed
- **IMPORTANT** For completed tasks, make sure to mark the task off as [X] in the tasks file.
8. Completion validation:
9. Completion validation:
- Verify all required tasks are completed
- Check that implemented features match the original specification
- Validate that tests pass and coverage meets requirements
- Confirm the implementation follows the technical plan
- Report final status with summary of completed work
Note: This command assumes a complete task breakdown exists in tasks.md. If tasks are incomplete or missing, suggest running `/tasks` first to regenerate the task list.
Note: This command assumes a complete task breakdown exists in tasks.md. If tasks are incomplete or missing, suggest running `/speckit.tasks` first to regenerate the task list.

View File

@@ -1,5 +1,13 @@
---
description: Execute the implementation planning workflow using the plan template to generate design artifacts.
handoffs:
- label: Create Tasks
agent: speckit.tasks
prompt: Break the plan into tasks
send: true
- label: Create Checklist
agent: speckit.checklist
prompt: Create a checklist for the following domain...
---
## User Input
@@ -14,7 +22,7 @@ You **MUST** consider the user input before proceeding (if not empty).
1. **Setup**: Run `.specify/scripts/bash/setup-plan.sh --json` from repo root and parse JSON for FEATURE_SPEC, IMPL_PLAN, SPECS_DIR, BRANCH. For single quotes in args like "I'm Groot", use escape syntax: e.g 'I'\''m Groot' (or double-quote if possible: "I'm Groot").
2. **Load context**: Read FEATURE_SPEC and `.specify.specify/memory/constitution.md`. Load IMPL_PLAN template (already copied).
2. **Load context**: Read FEATURE_SPEC and `.specify/memory/constitution.md`. Load IMPL_PLAN template (already copied).
3. **Execute plan workflow**: Follow the structure in IMPL_PLAN template to:
- Fill Technical Context (mark unknowns as "NEEDS CLARIFICATION")
@@ -37,7 +45,8 @@ You **MUST** consider the user input before proceeding (if not empty).
- For each integration → patterns task
2. **Generate and dispatch research agents**:
```
```text
For each unknown in Technical Context:
Task: "Research {unknown} for {feature context}"
For each technology choice:

View File

@@ -1,5 +1,13 @@
---
description: Create or update the feature specification from a natural language feature description.
handoffs:
- label: Build Technical Plan
agent: speckit.plan
prompt: Create a plan for the spec. I am building with...
- label: Clarify Spec Requirements
agent: speckit.clarify
prompt: Clarify specification requirements
send: true
---
## User Input
@@ -16,11 +24,53 @@ The text the user typed after `/speckit.specify` in the triggering message **is*
Given that feature description, do this:
1. Run the script `.specify/scripts/bash/create-new-feature.sh --json "$ARGUMENTS"` from repo root and parse its JSON output for BRANCH_NAME and SPEC_FILE. All file paths must be absolute.
**IMPORTANT** You must only ever run this script once. The JSON is provided in the terminal as output - always refer to it to get the actual content you're looking for. For single quotes in args like "I'm Groot", use escape syntax: e.g 'I'\''m Groot' (or double-quote if possible: "I'm Groot").
2. Load `.specify/templates/spec-template.md` to understand required sections.
1. **Generate a concise short name** (2-4 words) for the branch:
- Analyze the feature description and extract the most meaningful keywords
- Create a 2-4 word short name that captures the essence of the feature
- Use action-noun format when possible (e.g., "add-user-auth", "fix-payment-bug")
- Preserve technical terms and acronyms (OAuth2, API, JWT, etc.)
- Keep it concise but descriptive enough to understand the feature at a glance
- Examples:
- "I want to add user authentication" → "user-auth"
- "Implement OAuth2 integration for the API" → "oauth2-api-integration"
- "Create a dashboard for analytics" → "analytics-dashboard"
- "Fix payment processing timeout bug" → "fix-payment-timeout"
3. Follow this execution flow:
2. **Check for existing branches before creating new one**:
a. First, fetch all remote branches to ensure we have the latest information:
```bash
git fetch --all --prune
```
b. Find the highest feature number across all sources for the short-name:
- Remote branches: `git ls-remote --heads origin | grep -E 'refs/heads/[0-9]+-<short-name>$'`
- Local branches: `git branch | grep -E '^[* ]*[0-9]+-<short-name>$'`
- Specs directories: Check for directories matching `specs/[0-9]+-<short-name>`
c. Determine the next available number:
- Extract all numbers from all three sources
- Find the highest number N
- Use N+1 for the new branch number
d. Run the script `.specify/scripts/bash/create-new-feature.sh --json "$ARGUMENTS"` with the calculated number and short-name:
- Pass `--number N+1` and `--short-name "your-short-name"` along with the feature description
- Bash example: `.specify/scripts/bash/create-new-feature.sh --json "$ARGUMENTS" --json --number 5 --short-name "user-auth" "Add user authentication"`
- PowerShell example: `.specify/scripts/bash/create-new-feature.sh --json "$ARGUMENTS" -Json -Number 5 -ShortName "user-auth" "Add user authentication"`
**IMPORTANT**:
- Check all three sources (remote branches, local branches, specs directories) to find the highest number
- Only match branches/directories with the exact short-name pattern
- If no existing branches/directories found with this short-name, start with number 1
- You must only ever run this script once per feature
- The JSON is provided in the terminal as output - always refer to it to get the actual content you're looking for
- The JSON output will contain BRANCH_NAME and SPEC_FILE paths
- For single quotes in args like "I'm Groot", use escape syntax: e.g 'I'\''m Groot' (or double-quote if possible: "I'm Groot")
3. Load `.specify/templates/spec-template.md` to understand required sections.
4. Follow this execution flow:
1. Parse user description from Input
If empty: ERROR "No feature description provided"
@@ -46,12 +96,12 @@ Given that feature description, do this:
7. Identify Key Entities (if data involved)
8. Return: SUCCESS (spec ready for planning)
4. Write the specification to SPEC_FILE using the template structure, replacing placeholders with concrete details derived from the feature description (arguments) while preserving section order and headings.
5. Write the specification to SPEC_FILE using the template structure, replacing placeholders with concrete details derived from the feature description (arguments) while preserving section order and headings.
5. **Specification Quality Validation**: After writing the initial spec, validate it against quality criteria:
6. **Specification Quality Validation**: After writing the initial spec, validate it against quality criteria:
a. **Create Spec Quality Checklist**: Generate a checklist file at `FEATURE_DIR/checklists/requirements.md` using the checklist template structure with these validation items:
```markdown
# Specification Quality Checklist: [FEATURE NAME]
@@ -88,26 +138,26 @@ Given that feature description, do this:
- Items marked incomplete require spec updates before `/speckit.clarify` or `/speckit.plan`
```
b. **Run Validation Check**: Review the spec against each checklist item:
- For each item, determine if it passes or fails
- Document specific issues found (quote relevant spec sections)
c. **Handle Validation Results**:
- **If all items pass**: Mark checklist complete and proceed to step 6
- **If items fail (excluding [NEEDS CLARIFICATION])**:
1. List the failing items and specific issues
2. Update the spec to address each issue
3. Re-run validation until all items pass (max 3 iterations)
4. If still failing after 3 iterations, document remaining issues in checklist notes and warn user
- **If [NEEDS CLARIFICATION] markers remain**:
1. Extract all [NEEDS CLARIFICATION: ...] markers from the spec
2. **LIMIT CHECK**: If more than 3 markers exist, keep only the 3 most critical (by scope/security/UX impact) and make informed guesses for the rest
3. For each clarification needed (max 3), present options to user in this format:
```markdown
## Question [N]: [Topic]
@@ -126,7 +176,7 @@ Given that feature description, do this:
**Your choice**: _[Wait for user response]_
```
4. **CRITICAL - Table Formatting**: Ensure markdown tables are properly formatted:
- Use consistent spacing with pipes aligned
- Each cell should have spaces around content: `| Content |` not `|Content|`
@@ -137,10 +187,10 @@ Given that feature description, do this:
7. Wait for user to respond with their choices for all questions (e.g., "Q1: A, Q2: Custom - [details], Q3: B")
8. Update the spec by replacing each [NEEDS CLARIFICATION] marker with the user's selected or provided answer
9. Re-run validation after all clarifications are resolved
d. **Update Checklist**: After each validation iteration, update the checklist file with current pass/fail status
6. Report completion with branch name, spec file path, checklist results, and readiness for the next phase (`/speckit.clarify` or `/speckit.plan`).
7. Report completion with branch name, spec file path, checklist results, and readiness for the next phase (`/speckit.clarify` or `/speckit.plan`).
**NOTE:** The script creates and checks out the new branch and initializes the spec file before writing.
@@ -175,7 +225,7 @@ When creating this spec from a user prompt:
- Feature scope and boundaries (include/exclude specific use cases)
- User types and permissions (if multiple conflicting interpretations possible)
- Security/compliance requirements (when legally/financially significant)
**Examples of reasonable defaults** (don't ask about these):
- Data retention: Industry-standard practices for the domain

View File

@@ -1,5 +1,14 @@
---
description: Generate an actionable, dependency-ordered tasks.md for the feature based on available design artifacts.
handoffs:
- label: Analyze For Consistency
agent: speckit.analyze
prompt: Run a project analysis for consistency
send: true
- label: Implement Project
agent: speckit.implement
prompt: Start the implementation in phases
send: true
---
## User Input
@@ -19,42 +28,25 @@ You **MUST** consider the user input before proceeding (if not empty).
- **Optional**: data-model.md (entities), contracts/ (API endpoints), research.md (decisions), quickstart.md (test scenarios)
- Note: Not all projects have all documents. Generate tasks based on what's available.
3. **Execute task generation workflow** (follow the template structure):
3. **Execute task generation workflow**:
- Load plan.md and extract tech stack, libraries, project structure
- **Load spec.md and extract user stories with their priorities (P1, P2, P3, etc.)**
- If data-model.md exists: Extract entities map to user stories
- If contracts/ exists: Each file → map endpoints to user stories
- If research.md exists: Extract decisions → generate setup tasks
- **Generate tasks ORGANIZED BY USER STORY**:
- Setup tasks (shared infrastructure needed by all stories)
- **Foundational tasks (prerequisites that must complete before ANY user story can start)**
- For each user story (in priority order P1, P2, P3...):
- Group all tasks needed to complete JUST that story
- Include models, services, endpoints, UI components specific to that story
- Mark which tasks are [P] parallelizable
- If tests requested: Include tests specific to that story
- Polish/Integration tasks (cross-cutting concerns)
- **Tests are OPTIONAL**: Only generate test tasks if explicitly requested in the feature spec or user asks for TDD approach
- Apply task rules:
- Different files = mark [P] for parallel
- Same file = sequential (no [P])
- If tests requested: Tests before implementation (TDD order)
- Number tasks sequentially (T001, T002...)
- Load spec.md and extract user stories with their priorities (P1, P2, P3, etc.)
- If data-model.md exists: Extract entities and map to user stories
- If contracts/ exists: Map endpoints to user stories
- If research.md exists: Extract decisions for setup tasks
- Generate tasks organized by user story (see Task Generation Rules below)
- Generate dependency graph showing user story completion order
- Create parallel execution examples per user story
- Validate task completeness (each user story has all needed tasks, independently testable)
4. **Generate tasks.md**: Use `.specify.specify/templates/tasks-template.md` as structure, fill with:
4. **Generate tasks.md**: Use `.specify/templates/tasks-template.md` as structure, fill with:
- Correct feature name from plan.md
- Phase 1: Setup tasks (project initialization)
- Phase 2: Foundational tasks (blocking prerequisites for all user stories)
- Phase 3+: One phase per user story (in priority order from spec.md)
- Each phase includes: story goal, independent test criteria, tests (if requested), implementation tasks
- Clear [Story] labels (US1, US2, US3...) for each task
- [P] markers for parallelizable tasks within each story
- Checkpoint markers after each story phase
- Each phase includes: story goal, independent test criteria, tests (if requested), implementation tasks
- Final Phase: Polish & cross-cutting concerns
- Numbered tasks (T001, T002...) in execution order
- All tasks must follow the strict checklist format (see Task Generation Rules below)
- Clear file paths for each task
- Dependencies section showing story completion order
- Parallel execution examples per story
@@ -66,6 +58,7 @@ You **MUST** consider the user input before proceeding (if not empty).
- Parallel opportunities identified
- Independent test criteria for each story
- Suggested MVP scope (typically just User Story 1)
- Format validation: Confirm ALL tasks follow the checklist format (checkbox, ID, labels, file paths)
Context for task generation: $ARGUMENTS
@@ -73,10 +66,44 @@ The tasks.md should be immediately executable - each task must be specific enoug
## Task Generation Rules
**IMPORTANT**: Tests are optional. Only generate test tasks if the user explicitly requested testing or TDD approach in the feature specification.
**CRITICAL**: Tasks MUST be organized by user story to enable independent implementation and testing.
**Tests are OPTIONAL**: Only generate test tasks if explicitly requested in the feature specification or if user requests TDD approach.
### Checklist Format (REQUIRED)
Every task MUST strictly follow this format:
```text
- [ ] [TaskID] [P?] [Story?] Description with file path
```
**Format Components**:
1. **Checkbox**: ALWAYS start with `- [ ]` (markdown checkbox)
2. **Task ID**: Sequential number (T001, T002, T003...) in execution order
3. **[P] marker**: Include ONLY if task is parallelizable (different files, no dependencies on incomplete tasks)
4. **[Story] label**: REQUIRED for user story phase tasks only
- Format: [US1], [US2], [US3], etc. (maps to user stories from spec.md)
- Setup phase: NO story label
- Foundational phase: NO story label
- User Story phases: MUST have story label
- Polish phase: NO story label
5. **Description**: Clear action with exact file path
**Examples**:
- ✅ CORRECT: `- [ ] T001 Create project structure per implementation plan`
- ✅ CORRECT: `- [ ] T005 [P] Implement authentication middleware in src/middleware/auth.py`
- ✅ CORRECT: `- [ ] T012 [P] [US1] Create User model in src/models/user.py`
- ✅ CORRECT: `- [ ] T014 [US1] Implement UserService in src/services/user_service.py`
- ❌ WRONG: `- [ ] Create User model` (missing ID and Story label)
- ❌ WRONG: `T001 [US1] Create model` (missing checkbox)
- ❌ WRONG: `- [ ] [US1] Create User model` (missing Task ID)
- ❌ WRONG: `- [ ] T001 [US1] Create model` (missing file path)
### Task Organization
1. **From User Stories (spec.md)** - PRIMARY ORGANIZATION:
- Each user story (P1, P2, P3...) gets its own phase
- Map all related components to their story:
@@ -85,27 +112,26 @@ The tasks.md should be immediately executable - each task must be specific enoug
- Endpoints/UI needed for that story
- If tests requested: Tests specific to that story
- Mark story dependencies (most stories should be independent)
2. **From Contracts**:
- Map each contract/endpoint → to the user story it serves
- If tests requested: Each contract → contract test task [P] before implementation in that story's phase
3. **From Data Model**:
- Map each entity to the user story(ies) that need it
- Map each entity to the user story(ies) that need it
- If entity serves multiple stories: Put in earliest story or Setup phase
- Relationships → service layer tasks in appropriate story phase
4. **From Setup/Infrastructure**:
- Shared infrastructure → Setup phase (Phase 1)
- Foundational/blocking tasks → Foundational phase (Phase 2)
- Examples: Database schema setup, authentication framework, core libraries, base configurations
- These MUST complete before any user story can be implemented
- Story-specific setup → within that story's phase
5. **Ordering**:
- Phase 1: Setup (project initialization)
- Phase 2: Foundational (blocking prerequisites - must complete before user stories)
- Phase 3+: User Stories in priority order (P1, P2, P3...)
- Within each story: Tests (if requested) → Models → Services → Endpoints → Integration
- Final Phase: Polish & Cross-Cutting Concerns
- Each user story phase should be a complete, independently testable increment
### Phase Structure
- **Phase 1**: Setup (project initialization)
- **Phase 2**: Foundational (blocking prerequisites - MUST complete before user stories)
- **Phase 3+**: User Stories in priority order (P1, P2, P3...)
- Within each story: Tests (if requested) → Models → Services → Endpoints → Integration
- Each phase should be a complete, independently testable increment
- **Final Phase**: Polish & Cross-Cutting Concerns

View File

@@ -0,0 +1,30 @@
---
description: Convert existing tasks into actionable, dependency-ordered GitHub issues for the feature based on available design artifacts.
tools: ['github/github-mcp-server/issue_write']
---
## User Input
```text
$ARGUMENTS
```
You **MUST** consider the user input before proceeding (if not empty).
## Outline
1. Run `.specify/scripts/bash/check-prerequisites.sh --json --require-tasks --include-tasks` from repo root and parse FEATURE_DIR and AVAILABLE_DOCS list. All paths must be absolute. For single quotes in args like "I'm Groot", use escape syntax: e.g 'I'\''m Groot' (or double-quote if possible: "I'm Groot").
1. From the executed script, extract the path to **tasks**.
1. Get the Git remote by running:
```bash
git config --get remote.origin.url
```
> [!CAUTION]
> ONLY PROCEED TO NEXT STEPS IF THE REMOTE IS A GITHUB URL
1. For each task in the list, use the GitHub MCP server to create a new issue in the repository that is representative of the Git remote.
> [!CAUTION]
> UNDER NO CIRCUMSTANCES EVER CREATE ISSUES IN REPOSITORIES THAT DO NOT MATCH THE REMOTE URL